Determine whether Rolle's theorem can be applied. (Select all that apply.) Yes, Rolle's theorem can be applied. No, because f is not continuous on the closed interval [a, b]. No, because f is not differentiable in the open interval (a, b). No, because f (a) = f(b) If Rolle's theorem can be applied, find the required values of c. (Enter your answers as a comma-separated list. If Rolle's theorem cannot be applied, enter NA.) C=

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question
Determine whether Rolle's theorem can be applied. (Select all that apply.)
Yes, Rolle's theorem can be applied.
No, because fis not continuous on the closed interval [a, b].
No, because fis not differentiable in the open interval (a, b).
No, because f(a) f(b)
If Rolle's theorem can be applied, find the required values of c. (Enter your answers as a comma-separated list. If Rolle's theorem cannot be applied, enter NA.)
Transcribed Image Text:Determine whether Rolle's theorem can be applied. (Select all that apply.) Yes, Rolle's theorem can be applied. No, because fis not continuous on the closed interval [a, b]. No, because fis not differentiable in the open interval (a, b). No, because f(a) f(b) If Rolle's theorem can be applied, find the required values of c. (Enter your answers as a comma-separated list. If Rolle's theorem cannot be applied, enter NA.)
Use a graphing utility to graph the function on the closed interval [a, b]. (Select the correct graph.)
f(x) = 8x + tan(7x), [-¹
O
O
-0.2
-0.2
-0.1
-0.1
y
1.0
0.5
-0.5
-1.0
y
1.0
0.5
-0.5
-1.0
0.1
0.1
0.2
0.2
X
X
-0.2
-0.1
y
3
2
-1
-2f
-3
0.1
0.2
X
-0.2 -0.1
2
-2
0.1
0.2
Transcribed Image Text:Use a graphing utility to graph the function on the closed interval [a, b]. (Select the correct graph.) f(x) = 8x + tan(7x), [-¹ O O -0.2 -0.2 -0.1 -0.1 y 1.0 0.5 -0.5 -1.0 y 1.0 0.5 -0.5 -1.0 0.1 0.1 0.2 0.2 X X -0.2 -0.1 y 3 2 -1 -2f -3 0.1 0.2 X -0.2 -0.1 2 -2 0.1 0.2
Expert Solution
Step 1: Rolle's Theorem:

bold If bold space bold a bold space bold function bold space bold f bold space bold is bold space bold defined bold space bold in bold space bold the bold space bold closed bold space bold interval bold space bold left square bracket bold a bold comma bold b bold right square bracket bold space bold in bold space bold such bold space bold a bold space bold way bold space bold that bold space bold it bold space bold satisfies bold space bold the bold space bold following bold space bold conditions bold.
bold left parenthesis bold i bold right parenthesis bold space bold The bold space bold function bold space bold f bold space bold is bold space bold continuous bold space bold on bold space bold the bold space bold closed bold space bold interval bold space bold space stretchy left square bracket a comma b stretchy right square bracket bold.
bold left parenthesis bold ii bold right parenthesis bold space bold The bold space bold function bold space bold f bold space bold is bold space bold differentiable bold space bold on bold space bold the bold space bold open bold space bold interval bold space stretchy left parenthesis a comma b stretchy right parenthesis bold.
bold left parenthesis bold iii bold right parenthesis bold space bold If bold space bold f bold left parenthesis bold a bold right parenthesis bold equals bold f bold left parenthesis bold b bold right parenthesis bold space bold comma bold space bold then bold space bold there bold space bold exists bold space bold at bold space bold least bold space bold one bold space bold value bold space bold of bold space bold x bold space bold comma bold space bold a bold less than bold c bold less than bold b bold space bold in bold space bold such bold space bold a bold space bold way bold space bold that bold space bold f bold apostrophe bold left parenthesis bold c bold right parenthesis bold equals bold 0 bold space bold.

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,