Determine whether or not the following sets S of 2 x 2 matrices are linearly independent. 4 4 ✓1.S= -₁.5-{(13)· (2)) = 28 20 Select an Answer Select an Answer 3 17 (-³₁2 =)·(²²3¹)} | 25= {( 3 )· 2. S= Select an Answer 4 1 (25)-(3) (³). 20 10 4 28 3 x 35 = { (-1³), (4-12)}

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Determine whether or not the following sets S of 2 x 2 matrices are linearly independent.
{(÷ 3) (±
2)}
-4
Select an Answer
Select an Answer
1. S=
Select an Answer
3
(₁₂¹) (7²)}
-12
Select an Answer
4
4
25 = {(3) ( ) ( ).
2.S=
"
28
20
10
4 4
28 20
4
-12
+) 25-{(+ 3). (26 20²)}
= {(²
3. S=
-5
16
4
= {(2²3). (.
✓4. S=
2)·(4 ²)}
Transcribed Image Text:Determine whether or not the following sets S of 2 x 2 matrices are linearly independent. {(÷ 3) (± 2)} -4 Select an Answer Select an Answer 1. S= Select an Answer 3 (₁₂¹) (7²)} -12 Select an Answer 4 4 25 = {(3) ( ) ( ). 2.S= " 28 20 10 4 4 28 20 4 -12 +) 25-{(+ 3). (26 20²)} = {(² 3. S= -5 16 4 = {(2²3). (. ✓4. S= 2)·(4 ²)}
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,