Determine whether or not the following matrices have a Cholesky factorization; if they Ho, compute (by hand) the Cholesky factor R: A = [ 1 -2 0 -20 13 6 65 " B = 4 -4 0 -4 0 40 05

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Title: Cholesky Factorization of Matrices**

**Objective:**  
Determine whether the following matrices have a Cholesky factorization; if they do, compute (by hand) the Cholesky factor \( R \).

**Matrix A:**

\[ 
A = \begin{bmatrix} 
1 & -2 & 0 \\ 
-2 & 13 & 6 \\ 
0 & 6 & 5 
\end{bmatrix} 
\]

**Matrix B:**

\[ 
B = \begin{bmatrix} 
4 & -4 & 0 \\ 
-4 & 4 & 0 \\ 
0 & 0 & 5 
\end{bmatrix} 
\]

**Explanation:**

To find if a matrix has a Cholesky factorization, it needs to be positive definite. If it is, the Cholesky factor \( R \) is an upper triangular matrix such that \( A = R^T R \).

1. **Positive Definite Check:**
   - Ensure all leading principal minors of the matrix are positive.

2. **Cholesky Factorization:**
   - If positive definite, proceed to compute the elements of \( R \) using the relations:
     - \( R_{11} = \sqrt{A_{11}} \)
     - \( R_{1j} = \frac{A_{1j}}{R_{11}} \) (for \( j > 1 \))
     - \( R_{ii} = \sqrt{A_{ii} - \sum_{k=1}^{i-1} R_{ki}^2} \) (for \( i > 1 \))
     - \( R_{ij} = \frac{A_{ij} - \sum_{k=1}^{i-1} R_{ki} R_{kj}}{R_{ii}} \) (for \( i < j \))
Transcribed Image Text:**Title: Cholesky Factorization of Matrices** **Objective:** Determine whether the following matrices have a Cholesky factorization; if they do, compute (by hand) the Cholesky factor \( R \). **Matrix A:** \[ A = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 13 & 6 \\ 0 & 6 & 5 \end{bmatrix} \] **Matrix B:** \[ B = \begin{bmatrix} 4 & -4 & 0 \\ -4 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix} \] **Explanation:** To find if a matrix has a Cholesky factorization, it needs to be positive definite. If it is, the Cholesky factor \( R \) is an upper triangular matrix such that \( A = R^T R \). 1. **Positive Definite Check:** - Ensure all leading principal minors of the matrix are positive. 2. **Cholesky Factorization:** - If positive definite, proceed to compute the elements of \( R \) using the relations: - \( R_{11} = \sqrt{A_{11}} \) - \( R_{1j} = \frac{A_{1j}}{R_{11}} \) (for \( j > 1 \)) - \( R_{ii} = \sqrt{A_{ii} - \sum_{k=1}^{i-1} R_{ki}^2} \) (for \( i > 1 \)) - \( R_{ij} = \frac{A_{ij} - \sum_{k=1}^{i-1} R_{ki} R_{kj}}{R_{ii}} \) (for \( i < j \))
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,