Determine whether b is in the column space of A, and if so, express b as a linear combination of the column vectors of A. A = b = -10 bis in the column space of A and b = + 6 -10 bis in the column space of A and b = + O bis not in the column space of A bis in the column space of A and b = bis in the column space of A and b = O O

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question
100%

the first 2 are wrong, please help me find the right answer

## Problem Statement

Determine whether vector \( \mathbf{b} \) is in the column space of matrix \( \mathbf{A} \), and if so, express \( \mathbf{b} \) as a linear combination of the column vectors of \( \mathbf{A} \).

Given:

\[
\mathbf{A} = \begin{bmatrix} 3 & 5 \\ 6 & -10 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -2 \\ 16 \end{bmatrix}
\]

## Options

- **Option 1:** \( \mathbf{b} \) is in the column space of \( \mathbf{A} \) and \( \mathbf{b} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} + \begin{bmatrix} 5 \\ -10 \end{bmatrix} \)

- **Option 2:** \( \mathbf{b} \) is in the column space of \( \mathbf{A} \) and \( \mathbf{b} = \begin{bmatrix} 3 \\ 5 \end{bmatrix} + \begin{bmatrix} 6 \\ -10 \end{bmatrix} \) **(Selected Answer)**

- **Option 3:** \( \mathbf{b} \) is not in the column space of \( \mathbf{A} \)

- **Option 4:** \( \mathbf{b} \) is in the column space of \( \mathbf{A} \) and \( \mathbf{b} = \begin{bmatrix} 6 \\ -10 \end{bmatrix} - \begin{bmatrix} 5 \\ -10 \end{bmatrix} \)

- **Option 5:** \( \mathbf{b} \) is in the column space of \( \mathbf{A} \) and \( \mathbf{b} = \begin{bmatrix} 3 \\ 5 \end{bmatrix} - \begin{bmatrix} 6 \\ -10 \end{bmatrix} \)

## Explanation

The task requires checking if \( \mathbf{b} \) can be expressed as a linear combination of the columns of \( \mathbf{A} \). The columns of \( \mathbf{A} \) are \( \begin
Transcribed Image Text:## Problem Statement Determine whether vector \( \mathbf{b} \) is in the column space of matrix \( \mathbf{A} \), and if so, express \( \mathbf{b} \) as a linear combination of the column vectors of \( \mathbf{A} \). Given: \[ \mathbf{A} = \begin{bmatrix} 3 & 5 \\ 6 & -10 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -2 \\ 16 \end{bmatrix} \] ## Options - **Option 1:** \( \mathbf{b} \) is in the column space of \( \mathbf{A} \) and \( \mathbf{b} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} + \begin{bmatrix} 5 \\ -10 \end{bmatrix} \) - **Option 2:** \( \mathbf{b} \) is in the column space of \( \mathbf{A} \) and \( \mathbf{b} = \begin{bmatrix} 3 \\ 5 \end{bmatrix} + \begin{bmatrix} 6 \\ -10 \end{bmatrix} \) **(Selected Answer)** - **Option 3:** \( \mathbf{b} \) is not in the column space of \( \mathbf{A} \) - **Option 4:** \( \mathbf{b} \) is in the column space of \( \mathbf{A} \) and \( \mathbf{b} = \begin{bmatrix} 6 \\ -10 \end{bmatrix} - \begin{bmatrix} 5 \\ -10 \end{bmatrix} \) - **Option 5:** \( \mathbf{b} \) is in the column space of \( \mathbf{A} \) and \( \mathbf{b} = \begin{bmatrix} 3 \\ 5 \end{bmatrix} - \begin{bmatrix} 6 \\ -10 \end{bmatrix} \) ## Explanation The task requires checking if \( \mathbf{b} \) can be expressed as a linear combination of the columns of \( \mathbf{A} \). The columns of \( \mathbf{A} \) are \( \begin
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Research Design Formulation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,