Determine where the function is concave upward and where it is concave downward. g (x) = 5+ 22 Concave upward: 0(-00-V15), (0, V15) 0l-v15,0), (/15, 0) 0l-VI5, VT5) o(-00,-VI5), (VT5, ∞0) O no interval Concave downward: ol-00,-V15), (0, V15) o-V15,0), (VT5, ∞) ol-VI5, V15) o-00,-VT5). (VT15, 0) O no interval

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
icon
Concept explainers
Question
**Determining Concavity of the Function**

To determine where the function \( g(x) = \frac{x}{5 + x^2} \) is concave upward or concave downward, follow the steps below.

### Function:
\[ g(x) = \frac{x}{5 + x^2} \]

### Concave Upward:
- \((-\infty, -\sqrt{15})\), \( (0, \sqrt{15}) \)
- \((-\sqrt{15}, 0)\), \( (\sqrt{15}, \infty) \)
- \((-\sqrt{15}, \sqrt{15}) \)
- \((-\infty, -\sqrt{15})\), \( (\sqrt{15}, \infty) \) 
- No interval

### Concave Downward:
- \((-\infty, -\sqrt{15})\), \( (0, \sqrt{15}) \)
- \((-\sqrt{15}, 0)\), \( (\sqrt{15}, \infty) \)
- \((-\sqrt{15}, \sqrt{15}) \)
- \((-\infty, -\sqrt{15})\), \( (\sqrt{15}, \infty) \)
- No interval

### Explanation:
To determine concavity, you need to find the second derivative of \( g(x) \). Using the second derivative test, analyze the sign of the derivative:

1. Find the second derivative, \( g''(x) \).
2. Determine the intervals on which \( g''(x) \) is positive (concave upward) and where it is negative (concave downward).
3. Identify the points where \( g''(x) = 0 \) or does not exist and use these points to define the intervals.

Identify each interval and verify whether it corresponds to concave upward or downward behavior of the function, based on where the second derivative is positive or negative. The given options aim to guide you in identifying these intervals correctly.
Transcribed Image Text:**Determining Concavity of the Function** To determine where the function \( g(x) = \frac{x}{5 + x^2} \) is concave upward or concave downward, follow the steps below. ### Function: \[ g(x) = \frac{x}{5 + x^2} \] ### Concave Upward: - \((-\infty, -\sqrt{15})\), \( (0, \sqrt{15}) \) - \((-\sqrt{15}, 0)\), \( (\sqrt{15}, \infty) \) - \((-\sqrt{15}, \sqrt{15}) \) - \((-\infty, -\sqrt{15})\), \( (\sqrt{15}, \infty) \) - No interval ### Concave Downward: - \((-\infty, -\sqrt{15})\), \( (0, \sqrt{15}) \) - \((-\sqrt{15}, 0)\), \( (\sqrt{15}, \infty) \) - \((-\sqrt{15}, \sqrt{15}) \) - \((-\infty, -\sqrt{15})\), \( (\sqrt{15}, \infty) \) - No interval ### Explanation: To determine concavity, you need to find the second derivative of \( g(x) \). Using the second derivative test, analyze the sign of the derivative: 1. Find the second derivative, \( g''(x) \). 2. Determine the intervals on which \( g''(x) \) is positive (concave upward) and where it is negative (concave downward). 3. Identify the points where \( g''(x) = 0 \) or does not exist and use these points to define the intervals. Identify each interval and verify whether it corresponds to concave upward or downward behavior of the function, based on where the second derivative is positive or negative. The given options aim to guide you in identifying these intervals correctly.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Application of Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning