Determine the Riemann integral partitions given by Pn = Qn = {o, 0, 1 4 1 2 4n' 4n 3+n " 6 + 2n 4n 4n So 2x - 4x² dx by using definition, with the 0 n - 1 1 4n 1 1}, n€ N₁ on 0≤x≤ 2 4n - 3 4n " 1}, n nen, on 1 4 ≤ x ≤ 1.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Determine the Riemann integral
partitions given by
Pn =
Qn
=
{
n
0,
1 2
4n' 4n
1 3+n
4 4n 4n
£200-
i=1
"
Hint: Use the following formulae:
n
6 + 2n
So
2x - 4x² dx by using definition, with the
0
n-1 1
4n
i=1
2
2
ne N, on 0≤x≤
³,1},
4n - 3
4n
2n (3(i-1) + n) - (3(i − 1) + n)²
2n(3i+n)-(3i+n)²
n
Σ2n(i − 1) – (i − 1)² = _n(4n² – 3n − 1),
i=1
n
Σ2ni - 12
i=1
=
1
nen, on ≤ x ≤ 1.
4
1
1
= n(4n² + 3n − 1),
==
——2n(4n²
==
9n+3),
+9n+3).
Transcribed Image Text:Determine the Riemann integral partitions given by Pn = Qn = { n 0, 1 2 4n' 4n 1 3+n 4 4n 4n £200- i=1 " Hint: Use the following formulae: n 6 + 2n So 2x - 4x² dx by using definition, with the 0 n-1 1 4n i=1 2 2 ne N, on 0≤x≤ ³,1}, 4n - 3 4n 2n (3(i-1) + n) - (3(i − 1) + n)² 2n(3i+n)-(3i+n)² n Σ2n(i − 1) – (i − 1)² = _n(4n² – 3n − 1), i=1 n Σ2ni - 12 i=1 = 1 nen, on ≤ x ≤ 1. 4 1 1 = n(4n² + 3n − 1), == ——2n(4n² == 9n+3), +9n+3).
Expert Solution
steps

Step by step

Solved in 6 steps with 6 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,