Determine the real root of -12- 21x + 18x² - 2.75x³ graphically (choose your limits). In addition, determine the first root of the function with

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Can someone graph this for me (with the guide question and answer by an expert)? By drawing. Thank you.

Determine the real root of -12- 21x + 18x² - 2.75x³
graphically (choose your limits). In addition, determine
the first root of the function with
1) bisection
2) false position
For (1) and (2) use initial guesses of x₁ =
and a stopping criterion of 1%
-1 and xu
Xu = 0,
Transcribed Image Text:Determine the real root of -12- 21x + 18x² - 2.75x³ graphically (choose your limits). In addition, determine the first root of the function with 1) bisection 2) false position For (1) and (2) use initial guesses of x₁ = and a stopping criterion of 1% -1 and xu Xu = 0,
Step 1
Given that, f(x) = -12-21x + 18x² - 275x²
+(-1)=297570 and f(0) = -12 <0
So, the root of f(x)=0 lies between [-1,03
So, Xo =
30,
n
-1+0
2
now the root
Step 2
continuing this process of bisection method,
we get the following table-
n
xn= a +b
O
1
-0.5
2 -0.5
3 -0.5
4 -0.9375 08631 -0.375-14487
5 -0.9375 0.8631 -0.4062-0.3137
-0.9210 0·2625-014062-0.3137
-0.42 10 0·2695 -0.9191 -0.0234
8 1-0.918 | 0·12276-0'4141 -0.0234
1-0.416 0·0996 -0.4141 -0.0234
6
7
9
so, approximate root is -0.41 (corrected Upto)
O
1
2
3
4
20:5 & + (-0·5) = 3·343870
between [~0.5, 0]
5
lies
xn
f(a)
f(b)
O
-12
29.75
3.3438
O
-12
3.3438 -0.25 -5.582
3.3438-0375-14487"
Now using faise position method, we will use
the recursive relation, Xn+₂ = xn-
Xn+1-Xn
f(xn)
F(x₂+₁)-f(x₂)
+(Xn+2).
xn+2
-0.5
-0.25
+0.375
-0.4375
-0.4062
-0.4219
-64141
-0.418
-0.416
-6:415
Bisection
f(xn)
33438
-5582
-14487
0.8631
-0.3137
0.2695
-0.0234
61227
09496
0.0131
f(x) x₂+1
f(x+1)
G
29.75
-12 -0.2874-44117
29.75 -0.2874-44117-0.3794 -1:2897
29.75 -6.3794-1·2897-04052-0 35 13
29.75 -04052-0.3513-04122 -0.0938
29:75 -04122-00938 -0.419
-0.0249
29.75 -0414-0·02491-0·41451-0.0066
50, approximate root.
is -0.41.
And false position method converges
faster than
method.
Transcribed Image Text:Step 1 Given that, f(x) = -12-21x + 18x² - 275x² +(-1)=297570 and f(0) = -12 <0 So, the root of f(x)=0 lies between [-1,03 So, Xo = 30, n -1+0 2 now the root Step 2 continuing this process of bisection method, we get the following table- n xn= a +b O 1 -0.5 2 -0.5 3 -0.5 4 -0.9375 08631 -0.375-14487 5 -0.9375 0.8631 -0.4062-0.3137 -0.9210 0·2625-014062-0.3137 -0.42 10 0·2695 -0.9191 -0.0234 8 1-0.918 | 0·12276-0'4141 -0.0234 1-0.416 0·0996 -0.4141 -0.0234 6 7 9 so, approximate root is -0.41 (corrected Upto) O 1 2 3 4 20:5 & + (-0·5) = 3·343870 between [~0.5, 0] 5 lies xn f(a) f(b) O -12 29.75 3.3438 O -12 3.3438 -0.25 -5.582 3.3438-0375-14487" Now using faise position method, we will use the recursive relation, Xn+₂ = xn- Xn+1-Xn f(xn) F(x₂+₁)-f(x₂) +(Xn+2). xn+2 -0.5 -0.25 +0.375 -0.4375 -0.4062 -0.4219 -64141 -0.418 -0.416 -6:415 Bisection f(xn) 33438 -5582 -14487 0.8631 -0.3137 0.2695 -0.0234 61227 09496 0.0131 f(x) x₂+1 f(x+1) G 29.75 -12 -0.2874-44117 29.75 -0.2874-44117-0.3794 -1:2897 29.75 -6.3794-1·2897-04052-0 35 13 29.75 -04052-0.3513-04122 -0.0938 29:75 -04122-00938 -0.419 -0.0249 29.75 -0414-0·02491-0·41451-0.0066 50, approximate root. is -0.41. And false position method converges faster than method.
Expert Solution
steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,