Determine the particular solution of the ODE below, where p and q are constants. [-]]]+[%][KO]-[] 2 3 (0) P (0) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Plz answer correctly asap
Question 5
Determine the particular solution of the ODE below, where p and q are constants.
H-BA+K]-[]
0
a) eAt =
[1₂ (6)] = 64¹ [P] + √6 64(²-) [B(0)]ds
eAt
2
[7elt +2e-t 3e4t - 2e-t
2e4t+3et 2e4t - 3e-t
c) e4t = |
O a
[3et+2e-t
3e4t3e-t
b) eAt =
[1(0)]=e^t [P] + √6 e^(-) [B(0) de
So
ds
O b
2e-t 2e4t
3e-4e4t
[10]=64 [P]+√ e^(-) [E()]ds
eAt
d) et = |
O C
Od
2e4t - 2e-t
2e4t + 3e-t.
=
7
[7e4t +2e-t 3e4t - 2e-t
2e4t + 3e-t 2e4-3e-t
[120)] = 04² [1₂] + √6 e^(-0) [B(0)] ds
=e4t
(t
So
Transcribed Image Text:Question 5 Determine the particular solution of the ODE below, where p and q are constants. H-BA+K]-[] 0 a) eAt = [1₂ (6)] = 64¹ [P] + √6 64(²-) [B(0)]ds eAt 2 [7elt +2e-t 3e4t - 2e-t 2e4t+3et 2e4t - 3e-t c) e4t = | O a [3et+2e-t 3e4t3e-t b) eAt = [1(0)]=e^t [P] + √6 e^(-) [B(0) de So ds O b 2e-t 2e4t 3e-4e4t [10]=64 [P]+√ e^(-) [E()]ds eAt d) et = | O C Od 2e4t - 2e-t 2e4t + 3e-t. = 7 [7e4t +2e-t 3e4t - 2e-t 2e4t + 3e-t 2e4-3e-t [120)] = 04² [1₂] + √6 e^(-0) [B(0)] ds =e4t (t So
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,