Determine the partial fraction expansion for the rational function below (S-1) (²-1)
Determine the partial fraction expansion for the rational function below (S-1) (²-1)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
6 help
![### Partial Fraction Expansion Problem
#### Problem Statement
Determine the partial fraction expansion for the rational function below:
\[ \frac{5s}{(s-1)(s^2-1)} \]
#### Step-by-Step Solution
To solve this, we break the function into simpler fractions.
\[ \frac{5s}{(s-1)(s^2-1)} = \text{[Fill in the blanks with partial fraction components]} \]
To complete the problem, decompose the rational function into partial fractions that can be added together to form the original function.
##### The rational function in terms of partial fractions will have the form:
\[ \frac{5s}{(s-1)(s^2-1)} = \frac{A}{s-1} + \frac{Bs+C}{(s^2-1)} \]
Where \(A\), \(B\), and \(C\) are constants to be determined.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd1d700aa-072a-4ff7-be1d-cdca0f10aa9d%2F3e73333a-0254-4f67-a0de-0e82ac3363c0%2Fokqln4_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Partial Fraction Expansion Problem
#### Problem Statement
Determine the partial fraction expansion for the rational function below:
\[ \frac{5s}{(s-1)(s^2-1)} \]
#### Step-by-Step Solution
To solve this, we break the function into simpler fractions.
\[ \frac{5s}{(s-1)(s^2-1)} = \text{[Fill in the blanks with partial fraction components]} \]
To complete the problem, decompose the rational function into partial fractions that can be added together to form the original function.
##### The rational function in terms of partial fractions will have the form:
\[ \frac{5s}{(s-1)(s^2-1)} = \frac{A}{s-1} + \frac{Bs+C}{(s^2-1)} \]
Where \(A\), \(B\), and \(C\) are constants to be determined.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)