determine the Laplace transform of the given function. Q. f(t)=sint,0 ≤t <π , f(t +π)= f(t).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

determine the Laplace transform of the given function.

Q. f(t)=sint,0 ≤t <π , f(t +π)= f(t).

Expert Solution
Step 1

Given: ft=sin t, 0t<π
To find: The Laplace transform of the given periodic function.

Step 2

We have,
ft=sin t, 0t<π
The Laplace transform of the periodic function is given by-
Lft=11-e-sT0Tft e-st dt           =11-e-sπ0πft e-st dt           =11-e-sπ0πsin t e-st dtLet y=0πsin t e-st dty=sin t e-st dt-e-st dt×ddtsin t dt0π       =sin t e-st-s- e-st-s×cos t dt0π       =- e-stssin t+1se-st cos t dt0π       =- e-stssin t+1scos t e-st dt-e-st dt×ddtcos t dt 0π       =- e-stssin t+1s- e-stscos t-- e-sts×-sin t dt 0π       =- e-stssin t+1s- e-stscos t-1se-st sin t dt 0π       =- e-stssin t- e-sts2cos t-1s2e-st sin t dt 0π       =- e-stssin t- e-sts2cos t0π-1s20πe-st sin t dt        =- e-stssin t- e-sts2cos t0π-ys2        y=0πsin t e-st dty+ys2=- e-stsin ts+cos ts20πy+ys2=- e-πssin πs+cos πs2+ e-0ssin 0s+cos 0s2ys2+1s2=- e-πs1s2+ 1s2ys2+1s2=1s21-e-πsys2+1=1-e-πsy=1-e-πss2+1L{f(t)}=11-e-sπ1-e-πss2+1              =1s2+1L{f(t)}=1s2+1

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Laplace Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,