Determine the kinetic energy stored by a 250 MVA, 60 Hz, two pole synchronous generator with an inertia constant H of 5.4 MJ/MVA. Assume the machine is running steadily at synchronous speed with a shaft input of 331,100 hp. The electrical power developed suddenly changes from its normal value to a value of 200 MW. Determine the acceleration or deceleration of the rotor. If the acceleration computed for the generator is constant for a period of 9 cycles, determine the change in power angle in that period and the rpm at the end of 9 cycles.
Determine the kinetic energy stored by a 250 MVA, 60 Hz, two pole synchronous generator with an inertia constant H of 5.4 MJ/MVA. Assume the machine is running steadily at synchronous speed with a shaft input of 331,100 hp. The electrical power developed suddenly changes from its normal value to a value of 200 MW. Determine the acceleration or deceleration of the rotor. If the acceleration computed for the generator is constant for a period of 9 cycles, determine the change in power angle in that period and the rpm at the end of 9 cycles.
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
Determine the kinetic energy stored by a 250 MVA, 60 Hz, two pole synchronous generator with
an inertia constant H of 5.4 MJ/MVA. Assume the machine is running steadily at synchronous
speed with a shaft input of 331,100 hp. The electrical power developed suddenly changes from its
normal value to a value of 200 MW. Determine the acceleration or deceleration of the rotor. If the
acceleration computed for the generator is constant for a period of 9 cycles, determine the change
in power angle in that period and the rpm at the end of 9 cycles.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,