Determine the inverse Laplace transform of the function below. 16 s² +25 Click here to view the table of Laplace transforms

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
## Inverse Laplace Transform Problem

### Problem Statement:
Determine the inverse Laplace transform of the function below.

\[
\frac{16}{s^2 + 25}
\]

#### Interactive Resources:
- [Click here to view the table of Laplace transforms.](#)
- [Click here to view the table of properties of Laplace transforms.](#)

### Solution:
Utilize the inverse Laplace transform operator:

\[
\mathcal{L}^{-1}\left\{\frac{16}{s^2 + 25}\right\} = \Box
\]

---

## Properties of Laplace Transforms

### List of Properties:
1. \(\mathcal{L}\{f + g\} = \mathcal{L}\{f\} + \mathcal{L}\{g\}\)

2. \(\mathcal{L}\{cf\} = c\mathcal{L}\{f\}\) for any constant \(c\)

3. \(\mathcal{L}\{e^{at}f(t)\}(s) = \mathcal{L}\{f(t)\}(s - a)\)

4. \(\mathcal{L}\{f'(t)\}(s) = s\mathcal{L}\{f(t)\}(s) - f(0)\)

5. \(\mathcal{L}\{f''(t)\}(s) = s^2\mathcal{L}\{f(t)\}(s) - sf(0) - f'(0)\)

6. \(\mathcal{L}\{f^{(n)}(t)\}(s) = s^n\mathcal{L}\{f(t)\}(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \cdots - f^{(n-1)}(0)\)

7. \(\mathcal{L}\{f^{(n)}(t)\} = (-1)^n \frac{d^n}{ds^n} \{\mathcal{L}\{f(t)\}\}\)

8. \(\mathcal{L}^{-1} \{F_1 + F_2\} = \mathcal{L}^{-1} \{F_1\} + \mathcal{L
Transcribed Image Text:## Inverse Laplace Transform Problem ### Problem Statement: Determine the inverse Laplace transform of the function below. \[ \frac{16}{s^2 + 25} \] #### Interactive Resources: - [Click here to view the table of Laplace transforms.](#) - [Click here to view the table of properties of Laplace transforms.](#) ### Solution: Utilize the inverse Laplace transform operator: \[ \mathcal{L}^{-1}\left\{\frac{16}{s^2 + 25}\right\} = \Box \] --- ## Properties of Laplace Transforms ### List of Properties: 1. \(\mathcal{L}\{f + g\} = \mathcal{L}\{f\} + \mathcal{L}\{g\}\) 2. \(\mathcal{L}\{cf\} = c\mathcal{L}\{f\}\) for any constant \(c\) 3. \(\mathcal{L}\{e^{at}f(t)\}(s) = \mathcal{L}\{f(t)\}(s - a)\) 4. \(\mathcal{L}\{f'(t)\}(s) = s\mathcal{L}\{f(t)\}(s) - f(0)\) 5. \(\mathcal{L}\{f''(t)\}(s) = s^2\mathcal{L}\{f(t)\}(s) - sf(0) - f'(0)\) 6. \(\mathcal{L}\{f^{(n)}(t)\}(s) = s^n\mathcal{L}\{f(t)\}(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \cdots - f^{(n-1)}(0)\) 7. \(\mathcal{L}\{f^{(n)}(t)\} = (-1)^n \frac{d^n}{ds^n} \{\mathcal{L}\{f(t)\}\}\) 8. \(\mathcal{L}^{-1} \{F_1 + F_2\} = \mathcal{L}^{-1} \{F_1\} + \mathcal{L
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,