Determine the inverse Laplace transform of the function below. 1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Determine the Inverse Laplace Transform

To determine the inverse Laplace transform of the function below:

\[
\frac{1}{s^4}
\]

Click the links to view relevant tables:
- [Table of Laplace Transforms](#)
- [Table of Properties of Laplace Transforms](#)

#### Inverse Laplace Transform Expression

\[
\mathcal{L}^{-1}\left\{\frac{1}{s^4}\right\} = 
\]

### Properties of Laplace Transforms

The properties are outlined in a table as follows:

1. **Linear Combination:**
   \[
   \mathcal{L}\{f + g\} = \mathcal{L}\{f\} + \mathcal{L}\{g\}
   \]

2. **Scaling by a Constant:**
   \[
   \mathcal{L}\{cf\} = c\mathcal{L}\{f\} \quad \text{for any constant } c
   \]

3. **Exponential Scaling:**
   \[
   \mathcal{L}\{e^{at}f(t)\} = \mathcal{L}\{f(t)\}(s - a)
   \]

4. **Derivative in Time:**
   \[
   \mathcal{L}\{f'(t)\} = s\mathcal{L}\{f(t)\} - f(0)
   \]

5. **Second Derivative in Time:**
   \[
   \mathcal{L}\{f''(t)\} = s^2\mathcal{L}\{f(t)\} - sf(0) - f'(0)
   \]

6. **nth Derivative in Time:**
   \[
   \mathcal{L}\{f^{(n)}(t)\} = s^n\mathcal{L}\{f(t)\} - s^{n-1}f(0) - ... - f^{(n-1)}(0)
   \]

7. **Integrals Transform:**
   \[
   \mathcal{L}\left\{\int_0^t f(u) du\right\} = \frac{1}{s}\mathcal{L}\{f(t)\}
   \]

8. **Frequency Differentiation:**
Transcribed Image Text:### Determine the Inverse Laplace Transform To determine the inverse Laplace transform of the function below: \[ \frac{1}{s^4} \] Click the links to view relevant tables: - [Table of Laplace Transforms](#) - [Table of Properties of Laplace Transforms](#) #### Inverse Laplace Transform Expression \[ \mathcal{L}^{-1}\left\{\frac{1}{s^4}\right\} = \] ### Properties of Laplace Transforms The properties are outlined in a table as follows: 1. **Linear Combination:** \[ \mathcal{L}\{f + g\} = \mathcal{L}\{f\} + \mathcal{L}\{g\} \] 2. **Scaling by a Constant:** \[ \mathcal{L}\{cf\} = c\mathcal{L}\{f\} \quad \text{for any constant } c \] 3. **Exponential Scaling:** \[ \mathcal{L}\{e^{at}f(t)\} = \mathcal{L}\{f(t)\}(s - a) \] 4. **Derivative in Time:** \[ \mathcal{L}\{f'(t)\} = s\mathcal{L}\{f(t)\} - f(0) \] 5. **Second Derivative in Time:** \[ \mathcal{L}\{f''(t)\} = s^2\mathcal{L}\{f(t)\} - sf(0) - f'(0) \] 6. **nth Derivative in Time:** \[ \mathcal{L}\{f^{(n)}(t)\} = s^n\mathcal{L}\{f(t)\} - s^{n-1}f(0) - ... - f^{(n-1)}(0) \] 7. **Integrals Transform:** \[ \mathcal{L}\left\{\int_0^t f(u) du\right\} = \frac{1}{s}\mathcal{L}\{f(t)\} \] 8. **Frequency Differentiation:**
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,