Determine the equation of the pinto contact chord P(3,1) for the ellipse + 2y² - 2 = 0.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
+*
SOLVE STEP BY STEP IN DIGITAL FORMAT PLEASE
Determine the equation of the pinto contact chord P(3,1) for the ellipse x² + 2y² - 2 = 0.
Transcribed Image Text:+* SOLVE STEP BY STEP IN DIGITAL FORMAT PLEASE Determine the equation of the pinto contact chord P(3,1) for the ellipse x² + 2y² - 2 = 0.
Expert Solution
Step 1: Finding the equation of the tangent and point of contact

Given equation of the ellipse is x2+2y2=2

x22+y2=1, a=2, b=1

Given point P3,1

We have to find the tangent of the ellipse which passes through point P3,1

Advanced Math homework question answer, step 1, image 1

Clearly  equation of one of the tangent is y=1

We know the parametric equation of ellipse is acosθ,bsinθ

Therefore the parametric equation of  the given ellipse2cosθ,sinθ

x2+2y2=2

Let the  equation of any tangent on the ellipse is 

y=mx+a2m2+b2 y =mx+2m2+11=3m+2m2+11-3m2=2m2+121-6m+9m2=2m2+17m2-6m=0m7m-6=0m=0, 67y=1y=6x7+6×272+1   =6x7+12149

We have 

y=6x7+117y=6x7-117

At 3,1

y=6x7+117 does not satisfy.

Hence the other tangent is y=6x7-117

So the point of the tangent on the ellipse is 

x2+26x7-1172=249x2+72x2-264x+242=98121x2-264x+144=0                                x=1211y=-711

 

 

 

 

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,