) Determine the energy and the momentum of this photon. ii) If all the energy of this photon were to be converted to mass, determine the equivalent mass for the particle.

icon
Related questions
Question

1. A photon has a frequency of 7.50 x 1014 Hz,

a) Determine the energy and the momentum of this photon.

b) If all the energy of this photon were to be converted to mass, determine the equivalent mass for the particle.

c) A microscopic specimen has a wavelength of 8.2×10−14m and a speed of 1.1×105m/s. Determine the mass of this microscopic specimen.

i) Determine the energy and the momentum of this photon.

ii) If all the energy of this photon were to be converted to mass, determine the equivalent mass for the particle.

 

I attached my answers. I am unsure about the energy in part i) and about part ii). 

 

I don't understand how part a) and i) are different, and how part b) and ii) are different. I also don't understand how c) and ii) are different. If you could explain this, that would be great. Thank you. I mainly want to know how to do part i) and ii).

c)p = 8.09 × 10 -2' kg · m/s 2
v = 1.1 × 10 m/s
m = ?
p= mv
m = ?
8.09x 10 kg-m/s?
1.1x10 m/s
-26
= 7.35 x 10 2kg
Therefore, the mass of the microscopic specimen is 7.35 x 10 -2°kg.
i) h = 6.63 × 10 ~34 j .s
c = 3.00 x 10 *m/s
1 = 8.2 x 10 -14m
E = ?
E = 4¢
(6.63x10*J:s)(3.00x10 *m/s)
8.2x10 1m
= 2.43 x 10 -12J
h = 6.63 × 10 34J•S
1 = 8.2 x 10 -14m
p = ?
p = {
6.63x10 141-s
-14
8.2x10
= 8.09 x 10 -2' kg • m/s 2
Therefore, the energy of this photon is 2.43 x 10 -12J, and the momentum is
8.09 x 10 -2'kg · m/s 2 .
ii)
Transcribed Image Text:c)p = 8.09 × 10 -2' kg · m/s 2 v = 1.1 × 10 m/s m = ? p= mv m = ? 8.09x 10 kg-m/s? 1.1x10 m/s -26 = 7.35 x 10 2kg Therefore, the mass of the microscopic specimen is 7.35 x 10 -2°kg. i) h = 6.63 × 10 ~34 j .s c = 3.00 x 10 *m/s 1 = 8.2 x 10 -14m E = ? E = 4¢ (6.63x10*J:s)(3.00x10 *m/s) 8.2x10 1m = 2.43 x 10 -12J h = 6.63 × 10 34J•S 1 = 8.2 x 10 -14m p = ? p = { 6.63x10 141-s -14 8.2x10 = 8.09 x 10 -2' kg • m/s 2 Therefore, the energy of this photon is 2.43 x 10 -12J, and the momentum is 8.09 x 10 -2'kg · m/s 2 . ii)
2. a) ƒ = 7.50 × 10 14H2
h = 6.63 × 10 -34 j . s
E = ?
E = hf
= (6.63 × 10 -3ªJ · s)(7.50 × 10 1ªH2)
= 4.97 x 10 -19 J
E = 4.97 × 10 1ºJ
c = 3.00 × 10 *m/s
p = ?
4.97x10
-19,
3.00x10 "m/s
= 1.66 x 10 -2"kg · m/s 2
Therefore, the energy of this photon is 4.97 × 10 -1ºJ, and the momentum is
1.66 x 10 -2"kg · m/s² .
b) E = 4.97 × 10 -1ºJ
c = 3.00 × 10 *m/s
m = ?
E = mc ?
m =
4.97x10 -19
(3.00x10 m/s)?
= 5.52 x 10 3°kg
Therefore, the equivalent mass of the particle is 5.52 × 10 -3°kg.
Transcribed Image Text:2. a) ƒ = 7.50 × 10 14H2 h = 6.63 × 10 -34 j . s E = ? E = hf = (6.63 × 10 -3ªJ · s)(7.50 × 10 1ªH2) = 4.97 x 10 -19 J E = 4.97 × 10 1ºJ c = 3.00 × 10 *m/s p = ? 4.97x10 -19, 3.00x10 "m/s = 1.66 x 10 -2"kg · m/s 2 Therefore, the energy of this photon is 4.97 × 10 -1ºJ, and the momentum is 1.66 x 10 -2"kg · m/s² . b) E = 4.97 × 10 -1ºJ c = 3.00 × 10 *m/s m = ? E = mc ? m = 4.97x10 -19 (3.00x10 m/s)? = 5.52 x 10 3°kg Therefore, the equivalent mass of the particle is 5.52 × 10 -3°kg.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions