Determine the area under the standard normal curve that lies between (a) Z= - 0.05 and Z= 0.05, (b) Z= -0.79 and Z=0, and (c) Z= - 0.85 and Z= - 0.72. Click the icon to view a table of areas under the normal curve. - X Tables of Areas under the Normal Curve (a) The area that lies between Z= -0.05 and Z= 0.05 is. (Round to four decimal places as needed.) TABLE V (b) The area that lies between Z= - 0.79 and Z=0 is. Standard Normal Distribution (Round to four decimal places as needed.) .00 01 02 03 .04 05 06 07 .08 09 Area (c) The area that lies between Z= -0.85 and Z= - 0.72 is. -34 -33 -12 0.0003 0003 0.0003 a0003 0003 0.0003 0003 0.0003 0.0003 0.0002 0.0004 00003 0.0005 0.0005 0.0007 0007 0.0005 0005 0.0005 0.0004 0.004 0004 0.0004 0.0004 (Round to four decimal places as needed.) 0.0007 0.0007 0.0006 0.0006 0.0006 00006 0.0006 0.0005 0000 0.0010 009 0.0013 0.0013 0.0013 0012 0.0012 0.0011 0.0011 0.0011 0.0009 0.0009 0.0008 0.0008 0.0008 -30 0.0010 0.0010 0.0019 0018 0.0018 0.0017 0.0016 0016 0.0015 0.0026 a.0025 -29 -28 -27 -26 -25 0.0015 0.0014 0014 0.0024 0.0023 0.0023 0022 0.0021 0.0021 0.0008 0.008 0.0020 00019 0.0035 0.0034 0.0033 0032 0.0031 0.0030 0.0029 0.0027 0006 0.0040 0.0055 0.0054 0.0052 0.0047 0.0045 0.0039 0.0044 0.0043 0060 0.0059 0.0057 0.0037 0.0036 0.0062 0.0051 0.0049 004S 0.002 0.0107 a0104 0.0102 0099 00139 a0136 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 -24 -23 -12 0.0068 0.0089 0.0087 0.0084 0.0116 0.0113 00110 0.0066 0.0064 0.0096 0.0094 0.0091 0.0125 00132 00129 00122 00119 -21 -20 00179 00174 00170 00166 0.0162 001S8 0.0228 a.0222 00154 00150 0.0146 0.0143 0.0192 0.0217 a0212 0.0207 0002 00197 0.0188 0.0183 0087 a0SI 00274 a068 0039 a0351 00446 00436 00548 0.0537 -19 0.0062 0.0329 00322 0.0314 0.09 00401 00256 0.0050 0044 0036 0.0427 0.0526 00s16 0.0505 00495 0.0244 0.0239 a.0233 00307 0.030I 0.0294 0.0384 0.0375 0067 0.0475 0.0465 0.0455 0.092 -17 -16 -15 0.0418 0.0668 006S5 0.0643 000 0.0618 0.094 0.0S82 0.0571 0.0559 0.0793 0.0968 0951 a11s1 0.1131 01357 01335 00735 0.0721 0.069 -14 0.0778 a0764 0.0934 00918 0.0749 0.0708 0.0694 0.0681 0.0853 0.08 0O23 0.1038 a1020 0.1003 008S -L3 0.0901 01056 0.1251 0.1469 -12 0.1112 a1093 0.1075 0.1314 01292 Uzro 0.1539 a1515 0.1492 -LI a1230 a1210 0.1190 a1170 -10 01587 0.1562 0.1446 Q1423 0.1401 01379 -09 Q1841 0.1814 01711 a1788 01762 Q1736 0.2061 0203 0.2358 02327 0226 0.1685 a1660 0.1635 a1611 02005 a.1977 a.1949 Q1922 0.1894 Q1867 02177 02148 0.2611 02578 0.2546 02514 02483 02451 02119 02090 -0.7 02420 02389 0226 0226 02206 02743 02709 02676 02643 -05 0.3085 03050 0.3015 02981 0.2946 0.2912 0.2877 02843 02810 02776 -04 - -42 03446 03409 03372 03336 0.3300 03364 Q.3228 03192 03156 03121 0.3520 034K3 0.3936 037 03899 0.4247 021 04207 04168 0.4129 04090 0.4052 0.4013 0.3974 0.4602 0.5000 0.4960 0.4920 04880 0.4840 0.4801 05000 0.500 0.5398 05438 0.5596 03783 03745 03707 0.3669 03632 0.3594 03557 04562 04522 0.4483 0.4443 04404 0.4325 0426 -0.0 04761 04721 05O80 05120 a5160 0.5199 05239 0.5478 0.5517 0.5557 0,4681 0.4641 0.5279 05319 05359 05636 0.5675 05714 0.753 02 03 05793 0.5832 0.5871 05910 06179 06217 0.6255 0.6293 0.6331 0.9987 06006 0.6368 06406 05948 0.6064 06103 0.6141 0.6443 0640 06517
Determine the area under the standard normal curve that lies between (a) Z= - 0.05 and Z= 0.05, (b) Z= -0.79 and Z=0, and (c) Z= - 0.85 and Z= - 0.72. Click the icon to view a table of areas under the normal curve. - X Tables of Areas under the Normal Curve (a) The area that lies between Z= -0.05 and Z= 0.05 is. (Round to four decimal places as needed.) TABLE V (b) The area that lies between Z= - 0.79 and Z=0 is. Standard Normal Distribution (Round to four decimal places as needed.) .00 01 02 03 .04 05 06 07 .08 09 Area (c) The area that lies between Z= -0.85 and Z= - 0.72 is. -34 -33 -12 0.0003 0003 0.0003 a0003 0003 0.0003 0003 0.0003 0.0003 0.0002 0.0004 00003 0.0005 0.0005 0.0007 0007 0.0005 0005 0.0005 0.0004 0.004 0004 0.0004 0.0004 (Round to four decimal places as needed.) 0.0007 0.0007 0.0006 0.0006 0.0006 00006 0.0006 0.0005 0000 0.0010 009 0.0013 0.0013 0.0013 0012 0.0012 0.0011 0.0011 0.0011 0.0009 0.0009 0.0008 0.0008 0.0008 -30 0.0010 0.0010 0.0019 0018 0.0018 0.0017 0.0016 0016 0.0015 0.0026 a.0025 -29 -28 -27 -26 -25 0.0015 0.0014 0014 0.0024 0.0023 0.0023 0022 0.0021 0.0021 0.0008 0.008 0.0020 00019 0.0035 0.0034 0.0033 0032 0.0031 0.0030 0.0029 0.0027 0006 0.0040 0.0055 0.0054 0.0052 0.0047 0.0045 0.0039 0.0044 0.0043 0060 0.0059 0.0057 0.0037 0.0036 0.0062 0.0051 0.0049 004S 0.002 0.0107 a0104 0.0102 0099 00139 a0136 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 -24 -23 -12 0.0068 0.0089 0.0087 0.0084 0.0116 0.0113 00110 0.0066 0.0064 0.0096 0.0094 0.0091 0.0125 00132 00129 00122 00119 -21 -20 00179 00174 00170 00166 0.0162 001S8 0.0228 a.0222 00154 00150 0.0146 0.0143 0.0192 0.0217 a0212 0.0207 0002 00197 0.0188 0.0183 0087 a0SI 00274 a068 0039 a0351 00446 00436 00548 0.0537 -19 0.0062 0.0329 00322 0.0314 0.09 00401 00256 0.0050 0044 0036 0.0427 0.0526 00s16 0.0505 00495 0.0244 0.0239 a.0233 00307 0.030I 0.0294 0.0384 0.0375 0067 0.0475 0.0465 0.0455 0.092 -17 -16 -15 0.0418 0.0668 006S5 0.0643 000 0.0618 0.094 0.0S82 0.0571 0.0559 0.0793 0.0968 0951 a11s1 0.1131 01357 01335 00735 0.0721 0.069 -14 0.0778 a0764 0.0934 00918 0.0749 0.0708 0.0694 0.0681 0.0853 0.08 0O23 0.1038 a1020 0.1003 008S -L3 0.0901 01056 0.1251 0.1469 -12 0.1112 a1093 0.1075 0.1314 01292 Uzro 0.1539 a1515 0.1492 -LI a1230 a1210 0.1190 a1170 -10 01587 0.1562 0.1446 Q1423 0.1401 01379 -09 Q1841 0.1814 01711 a1788 01762 Q1736 0.2061 0203 0.2358 02327 0226 0.1685 a1660 0.1635 a1611 02005 a.1977 a.1949 Q1922 0.1894 Q1867 02177 02148 0.2611 02578 0.2546 02514 02483 02451 02119 02090 -0.7 02420 02389 0226 0226 02206 02743 02709 02676 02643 -05 0.3085 03050 0.3015 02981 0.2946 0.2912 0.2877 02843 02810 02776 -04 - -42 03446 03409 03372 03336 0.3300 03364 Q.3228 03192 03156 03121 0.3520 034K3 0.3936 037 03899 0.4247 021 04207 04168 0.4129 04090 0.4052 0.4013 0.3974 0.4602 0.5000 0.4960 0.4920 04880 0.4840 0.4801 05000 0.500 0.5398 05438 0.5596 03783 03745 03707 0.3669 03632 0.3594 03557 04562 04522 0.4483 0.4443 04404 0.4325 0426 -0.0 04761 04721 05O80 05120 a5160 0.5199 05239 0.5478 0.5517 0.5557 0,4681 0.4641 0.5279 05319 05359 05636 0.5675 05714 0.753 02 03 05793 0.5832 0.5871 05910 06179 06217 0.6255 0.6293 0.6331 0.9987 06006 0.6368 06406 05948 0.6064 06103 0.6141 0.6443 0640 06517
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman