Determine if the sequence {an} converges, and if it does, find its limit when an 6n+ (-1)" 3n+5 1. converges with limit 2. converges with limit 4. converges with limit = 5. converges with limit = 314 3. sequence does not converge 7 3 3 5 3 - 2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Determine if the sequence \(\{a_n\}\) converges, and if it does, find its limit when

\[
a_n = \frac{6n + (-1)^n}{3n + 5}.
\]

Options:
1. Converges with limit \( = \frac{3}{4} \)
2. Converges with limit \( = \frac{5}{3} \)
3. Sequence does not converge
4. Converges with limit \( = \frac{7}{3} \)
5. Converges with limit \( = 2 \)
Transcribed Image Text:Determine if the sequence \(\{a_n\}\) converges, and if it does, find its limit when \[ a_n = \frac{6n + (-1)^n}{3n + 5}. \] Options: 1. Converges with limit \( = \frac{3}{4} \) 2. Converges with limit \( = \frac{5}{3} \) 3. Sequence does not converge 4. Converges with limit \( = \frac{7}{3} \) 5. Converges with limit \( = 2 \)
Expert Solution
Step 1

It is given that, an be a sequence defined by ;

       an = 6n+-1n3n+5

We have to determine that whether the given sequence converges or diverges and if it converges then we have to find the limit of this sequence.

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,