Determine if the following sets of functions are linearly independent using the Wronskian. (a) (b) (c) f(x) = sin(x), g(r) = cos(r), f(x)=e³¹, g(x)=e=³(x+1), е f(x) = x², g(x) = √T.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Determine if the following sets of functions are linearly independent using the
Wronskian.
(a)
(b)
(c)
f(x) = sin(x), g(x) = cos(r),
f(x)=e³, g(x)=e=³(x+1),
f(x)=x², g(x)=√x.
Transcribed Image Text:Determine if the following sets of functions are linearly independent using the Wronskian. (a) (b) (c) f(x) = sin(x), g(x) = cos(r), f(x)=e³, g(x)=e=³(x+1), f(x)=x², g(x)=√x.
Expert Solution
Step 1: ''Introduction to the solution''

(a) L e t space space space f left parenthesis x right parenthesis equals sin left parenthesis x right parenthesis comma space g left parenthesis x right parenthesis equals cos left parenthesis x right parenthesis comma space x element of straight real numbers

Recall  the  Wronskian of two function space f space a n d space g space is W left parenthesis f comma g right parenthesis equals open vertical bar table row cell f left parenthesis x right parenthesis end cell cell g left parenthesis x right parenthesis end cell row cell f apostrophe left parenthesis x right parenthesis end cell cell g apostrophe left parenthesis x right parenthesis end cell end table close vertical bar

Now, W left parenthesis f comma g right parenthesis equals open vertical bar table row cell sin left parenthesis x right parenthesis end cell cell cos left parenthesis x right parenthesis end cell row cell cos left parenthesis x right parenthesis end cell cell negative sin left parenthesis x right parenthesis end cell end table close vertical bar equals negative open parentheses sin squared x plus cos squared x close parentheses equals negative 1 not equal to 0

rightwards double arrowf space a n d space space g space spaceare  linearly  independent.

(b) Let f left parenthesis x right parenthesis equals e to the power of negative 3 x end exponent comma space g left parenthesis x right parenthesis equals e to the power of negative 3 open parentheses x plus 1 close parentheses end exponent

Then, Wronskian of f and g is  W open parentheses f comma g close parentheses equals open vertical bar table row cell f left parenthesis x right parenthesis end cell cell g left parenthesis x right parenthesis end cell row cell f apostrophe left parenthesis x right parenthesis end cell cell g apostrophe left parenthesis x right parenthesis end cell end table close vertical bar equals open vertical bar table row cell e to the power of negative 3 x end exponent end cell cell e to the power of negative 3 left parenthesis x plus 1 right parenthesis end exponent end cell row cell negative 3 e to the power of negative 3 x end exponent end cell cell negative 3 e to the power of negative 3 left parenthesis x plus 1 right parenthesis end exponent end cell end table close vertical bar equals open parentheses negative 3 space e to the power of negative 3 x end exponent space e to the power of negative 3 left parenthesis x plus 1 right parenthesis end exponent plus 3 space e to the power of negative 3 x end exponent space e to the power of negative 3 left parenthesis x plus 1 right parenthesis end exponent close parentheses equals 0
rightwards double arrow f space a n d space g space space space a r e space space l i n e a r l y space space d e p e n d e n t.

steps

Step by step

Solved in 3 steps with 24 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,