Determine if the following series converges or diverges. Use any method, and give reasons for your answer. (Hint: First show that (1/n!) ≤ (1/n(n-1)) for n ≥ 2.) M8 1 n! n=2 Show that (1/n!) ≤ (1/n(n-1)) for n ≥2. First rewrite the factorial of n. The factorial of n is n! =n(n-1) ▼
Determine if the following series converges or diverges. Use any method, and give reasons for your answer. (Hint: First show that (1/n!) ≤ (1/n(n-1)) for n ≥ 2.) M8 1 n! n=2 Show that (1/n!) ≤ (1/n(n-1)) for n ≥2. First rewrite the factorial of n. The factorial of n is n! =n(n-1) ▼
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Convergence or Divergence of a Series**
Determine if the following series converges or diverges. Use any method, and provide reasons for your answer.
\[
\sum_{n=2}^{\infty} \frac{1}{n!}
\]
**Hint:** First show that \((1/n!) \leq (1/n(n-1))\) for \(n \geq 2\).
---
1. **Inequality Proof**
Show that \(\frac{1}{n!} \leq \frac{1}{n(n-1)}\) for \(n \geq 2\). First, rewrite the factorial of \(n\).
2. **Factorial Definition**
The factorial of \(n\) is defined as \(n! = n(n-1)(\ldots)\).
The diagram includes a dropdown selection for rewriting \(n!\), which contains the following options:
- \(2.\)
- \(!\)
- \(-1\)
- \(3.\)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fdf00542e-b5b8-4896-9f9f-a2b46551c658%2Fa13467c4-3fb4-43d9-bcca-b206501f2ed2%2Frev61i_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Convergence or Divergence of a Series**
Determine if the following series converges or diverges. Use any method, and provide reasons for your answer.
\[
\sum_{n=2}^{\infty} \frac{1}{n!}
\]
**Hint:** First show that \((1/n!) \leq (1/n(n-1))\) for \(n \geq 2\).
---
1. **Inequality Proof**
Show that \(\frac{1}{n!} \leq \frac{1}{n(n-1)}\) for \(n \geq 2\). First, rewrite the factorial of \(n\).
2. **Factorial Definition**
The factorial of \(n\) is defined as \(n! = n(n-1)(\ldots)\).
The diagram includes a dropdown selection for rewriting \(n!\), which contains the following options:
- \(2.\)
- \(!\)
- \(-1\)
- \(3.\)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning