Determine if each series converges or diverges and state which test justifies your conclusion. When appropriate, state if the series is absolutely convergent or conditionally convergent. 00 n 2n Σ 4n? 1. 2 n+1 Σ 6. n=1 2" n=1 Σ 1 4" 2. n=1 N+\n+1 7. 3" – 2 n=1 00 3. (2n)! (-1)" 8. 2 In+5 n° n=1 n=0 00 (-1)*1 2n +1 \n+1 n 00 4. E(-1)'e -2n 9. n=0 n=1 \n+1 00 5. n° +6 3 10. 4 n=0

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

I would 2, 3, 4, 5, 6, 7, 8, 9, and 10 answered

### Convergence and Divergence of Series

Determine if each series converges or diverges and state which test justifies your conclusion. When appropriate, state if the series is absolutely convergent or conditionally convergent.

1. \( \sum_{n=1}^{\infty} \left( \frac{2n}{n+1} \right)^n \)

2. \( \sum_{n=1}^{\infty} \frac{1}{n + \sqrt{n + 1}} \)

3. \( \sum_{n=1}^{\infty} \frac{(2n)!}{n^5} \)

4. \( \sum_{n=0}^{\infty} (-1)^n e^{-2n} \)

5. \( \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3 + 6} \)

6. \( \sum_{n=1}^{\infty} \frac{4n^2}{2^n} \)

7. \( \sum_{n=1}^{\infty} \frac{4^n}{3^n - 2} \)

8. \( \sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt[3]{n + 5}} \)

9. \( \sum_{n=1}^{\infty} \frac{(-1)^{n+1} n^2}{2n^2 + 1} \)

10. \( \sum_{n=0}^{\infty} \left( \frac{\pi}{4} \right)^n \)

### Explanation of Series

- For each series, utilize appropriate convergence tests such as the Ratio Test, Root Test, Integral Test, Alternating Series Test, Direct Comparison Test, and others as applicable.
- Determine whether the series diverges or converges.
- If the series converges, specify if it is absolutely convergent or conditionally convergent.

This problem set aims to provide practice with identifying the convergence properties of infinite series using various analytical techniques, essential for calculus and real analysis courses.
Transcribed Image Text:### Convergence and Divergence of Series Determine if each series converges or diverges and state which test justifies your conclusion. When appropriate, state if the series is absolutely convergent or conditionally convergent. 1. \( \sum_{n=1}^{\infty} \left( \frac{2n}{n+1} \right)^n \) 2. \( \sum_{n=1}^{\infty} \frac{1}{n + \sqrt{n + 1}} \) 3. \( \sum_{n=1}^{\infty} \frac{(2n)!}{n^5} \) 4. \( \sum_{n=0}^{\infty} (-1)^n e^{-2n} \) 5. \( \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3 + 6} \) 6. \( \sum_{n=1}^{\infty} \frac{4n^2}{2^n} \) 7. \( \sum_{n=1}^{\infty} \frac{4^n}{3^n - 2} \) 8. \( \sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt[3]{n + 5}} \) 9. \( \sum_{n=1}^{\infty} \frac{(-1)^{n+1} n^2}{2n^2 + 1} \) 10. \( \sum_{n=0}^{\infty} \left( \frac{\pi}{4} \right)^n \) ### Explanation of Series - For each series, utilize appropriate convergence tests such as the Ratio Test, Root Test, Integral Test, Alternating Series Test, Direct Comparison Test, and others as applicable. - Determine whether the series diverges or converges. - If the series converges, specify if it is absolutely convergent or conditionally convergent. This problem set aims to provide practice with identifying the convergence properties of infinite series using various analytical techniques, essential for calculus and real analysis courses.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Pythagoras' Theorem
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning