Determine a region whose area is equal to the given limit. Do not evaluate the limit. lim Σ Σ(1+2) i = 1 O y = (1 + x) on [1, 3] Oy (1 + x) on [0, 2] 12 Oy = (1 + x) ¹2 on [1, 3] O y = x8 on [0, 2] Oy = (1 + x)8 on [0, 2] ³

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Determine a Region Whose Area is Equal to the Given Limit**

Determine a region whose area is equal to the given limit. Do not evaluate the limit.

\[
\lim_{{n \to \infty}} \sum_{{i=1}}^n \frac{2}{n} \left( 1 + \frac{2i}{n} \right)^8
\]

Options:
1. \( y = (1 + x)^7 \) on \([1, 3]\)
2. \( y = (1 + x)^7 \) on \([0, 2]\)
3. \( y = (1 + x)^{12} \) on \([1, 3]\)
4. \( y = x^8 \) on \([0, 2]\)
5. \( y = (1 + x)^8 \) on \([0, 2]\)

---

To determine which region’s area is equal to the given limit, match the integral form to the limit form. The integral form of the area under a curve \( f(x) \) from \( a \) to \( b \) is given by:

\[
\int_a^b f(x) \, dx
\]

The given limit suggests using the form of the Riemann sum for an integral. This can help identify the corresponding function and interval:

\[
\int_a^b f(x) \, dx = \lim_{{n \to \infty}} \sum_{{i=1}}^n f(x_i^*) \Delta x
\]

Comparing the Riemann sum to the given limit:

* \(\Delta x = \frac{2}{n}\)
* \(f\left(x_i\right) = \left(1 + \frac{2i}{n}\right)^8\)
* The interval \([a, b]\) is \([0, 2]\)

Thus:
* \(y = (1 + x)^8\) matches the function form.

**Conclusion:**
The correct region whose area is equal to the given limit is represented by the function \(y = (1 + x)^8\) on the interval \([0, 2]\). 

So, the correct option is:

\[ 
\circ \quad y = (1 + x)^8 \text{ on } [0,
Transcribed Image Text:**Determine a Region Whose Area is Equal to the Given Limit** Determine a region whose area is equal to the given limit. Do not evaluate the limit. \[ \lim_{{n \to \infty}} \sum_{{i=1}}^n \frac{2}{n} \left( 1 + \frac{2i}{n} \right)^8 \] Options: 1. \( y = (1 + x)^7 \) on \([1, 3]\) 2. \( y = (1 + x)^7 \) on \([0, 2]\) 3. \( y = (1 + x)^{12} \) on \([1, 3]\) 4. \( y = x^8 \) on \([0, 2]\) 5. \( y = (1 + x)^8 \) on \([0, 2]\) --- To determine which region’s area is equal to the given limit, match the integral form to the limit form. The integral form of the area under a curve \( f(x) \) from \( a \) to \( b \) is given by: \[ \int_a^b f(x) \, dx \] The given limit suggests using the form of the Riemann sum for an integral. This can help identify the corresponding function and interval: \[ \int_a^b f(x) \, dx = \lim_{{n \to \infty}} \sum_{{i=1}}^n f(x_i^*) \Delta x \] Comparing the Riemann sum to the given limit: * \(\Delta x = \frac{2}{n}\) * \(f\left(x_i\right) = \left(1 + \frac{2i}{n}\right)^8\) * The interval \([a, b]\) is \([0, 2]\) Thus: * \(y = (1 + x)^8\) matches the function form. **Conclusion:** The correct region whose area is equal to the given limit is represented by the function \(y = (1 + x)^8\) on the interval \([0, 2]\). So, the correct option is: \[ \circ \quad y = (1 + x)^8 \text{ on } [0,
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning