Determination of Acceleration due to Gravity (g Plot the graph of l versus t and determine the value of g 1.아- 0.9- L2- L, T- T 0.8 Slope = 0.가- 0.6- (m) 0.5

icon
Related questions
Question
100%
Table 1. Free Fall

 

 

h

(cm )

 

t1

( s )

 

t2

( s )

 

t3

( s )

     

40.0

0.2850

0.2848

0.2847

     

50.0

0.3209

0.3204

0.3201

     

60.0

0.3516

0.3522

0.3519

     

70.0

0.3782

0.3785

0.3778

     

 

80.0

0.4036

0.4039

0.4044

     

90.0

0.4270

0.4273

0.4264

     

solve the question in the image and make sure it is correct 100%

L1= 0.3

L2 = 0.7

Determination of Acceleration due to Gravity (g)
Plot the graph of I versus t2 and determine the value of g
1.아-
L2
0.9-
0.8-
L- L,
Slope :
mis
%3D
0.가-
0.6-
0.5E
(m)
0.4-
g = 4 n²x slope =
m/s
0.3-
0.2-
T
0.1-
4
6.
T? (s)
The value of (ggraph) = 4t xslope
%3D
%3D
Taking (gtheoretical = 9.8 m/s'), the percentage error of your result is:
gtheoretical Sgraph X 100=
Stpearetinal
% Error:
%3D
Transcribed Image Text:Determination of Acceleration due to Gravity (g) Plot the graph of I versus t2 and determine the value of g 1.아- L2 0.9- 0.8- L- L, Slope : mis %3D 0.가- 0.6- 0.5E (m) 0.4- g = 4 n²x slope = m/s 0.3- 0.2- T 0.1- 4 6. T? (s) The value of (ggraph) = 4t xslope %3D %3D Taking (gtheoretical = 9.8 m/s'), the percentage error of your result is: gtheoretical Sgraph X 100= Stpearetinal % Error: %3D
Part B:
Table 2: Simple pendulum
Ti
T2
T
(Ty
g
(cm)
(s)
(s)
(s)
45.0
1.355
1.359
1.351
55.0
1.490
1.492
1.493
65.0
1.614
1.617
1.615
75.0
1.746
1.748
1.742
85.0
1.851
1.850
1.849
95.0
1.957
1.954
1.953
Average value g =
Find the Standard Error:
(g-9) ( )
(Gi-g) ( )
Standard deviation (Og) =
n-1
Standard Error (og) =
%3D
Result g + og =
Transcribed Image Text:Part B: Table 2: Simple pendulum Ti T2 T (Ty g (cm) (s) (s) (s) 45.0 1.355 1.359 1.351 55.0 1.490 1.492 1.493 65.0 1.614 1.617 1.615 75.0 1.746 1.748 1.742 85.0 1.851 1.850 1.849 95.0 1.957 1.954 1.953 Average value g = Find the Standard Error: (g-9) ( ) (Gi-g) ( ) Standard deviation (Og) = n-1 Standard Error (og) = %3D Result g + og =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions