det(A - XE) e™A B = A - λι Ε e™A = B² = = e -I −(A³ +3A² + 3A + 1) || = A +E= -3 ܘ -9 IB e¹(B-E) = е-¹eT. =e 1 + 3x 9x 0 1 0 0 0 3 - - -3x = e 3x² 2 9x² 2 en = X 1 3x -(A+1)³ = 0 3 1 -3 0 1 9 3 -3 B³ = 0, -I - (E+ 2B + — ² B²) -1 -x+ X 2 1 - 3x + 3x² 2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

When calculating the exA of a matrix A, when does A equal to (B-E) or (B+E)? in differential equations?

I have attached an image of the matrix and the solution, after taking the exponents of B I really dont understand whats being done, please if able explain it in more detail. Thank you in advance.

A
2
-3
9
1 1
-1
1
3 -4
-1
-1
Transcribed Image Text:A 2 -3 9 1 1 -1 1 3 -4 -1 -1
det(A - XE)
e™A
B = A - λι Ε
e™A
=
B²
=
= e
-I
−(A³ +3A² + 3A + 1)
||
= A +E=
-3
ܘ
-9
IB
e¹(B-E) — e-ªeª.
=e
1 + 3x
9x
0 1
0 0
0 3
-
-
-3x
= e
3x²
2
9x²
2
en
=
X
1
3x
-(A+1)³ = 0
3
1
-3 0
1
9 3 -3
B³ = 0,
-I
- (E+ 2B + ²/² B²)
-1
-x+
X
2
1 - 3x +
3x²
2
Transcribed Image Text:det(A - XE) e™A B = A - λι Ε e™A = B² = = e -I −(A³ +3A² + 3A + 1) || = A +E= -3 ܘ -9 IB e¹(B-E) — e-ªeª. =e 1 + 3x 9x 0 1 0 0 0 3 - - -3x = e 3x² 2 9x² 2 en = X 1 3x -(A+1)³ = 0 3 1 -3 0 1 9 3 -3 B³ = 0, -I - (E+ 2B + ²/² B²) -1 -x+ X 2 1 - 3x + 3x² 2
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,