Minimization
In mathematics, traditional optimization problems are typically expressed in terms of minimization. When we talk about minimizing or maximizing a function, we refer to the maximum and minimum possible values of that function. This can be expressed in terms of global or local range. The definition of minimization in the thesaurus is the process of reducing something to a small amount, value, or position. Minimization (noun) is an instance of belittling or disparagement.
Maxima and Minima
The extreme points of a function are the maximum and the minimum points of the function. A maximum is attained when the function takes the maximum value and a minimum is attained when the function takes the minimum value.
Derivatives
A derivative means a change. Geometrically it can be represented as a line with some steepness. Imagine climbing a mountain which is very steep and 500 meters high. Is it easier to climb? Definitely not! Suppose walking on the road for 500 meters. Which one would be easier? Walking on the road would be much easier than climbing a mountain.
Concavity
In calculus, concavity is a descriptor of mathematics that tells about the shape of the graph. It is the parameter that helps to estimate the maximum and minimum value of any of the functions and the concave nature using the graphical method. We use the first derivative test and second derivative test to understand the concave behavior of the function.
![**Problem Statement:**
Describe the \( x \)-values at which \( f \) is differentiable. (Enter your answer using interval notation.)
\[ f(x) = (x - 4)^{2/5} \]
**Graph Explanation:**
The graph shows the function \( f(x) = (x - 4)^{2/5} \).
- **Axes**:
- The horizontal axis represents the \( x \)-values and ranges from \(-10\) to \(10\).
- The vertical axis represents the \( y \)-values and ranges from \(-4\) to \(4\).
- **Graph Details**:
- The graph consists of two branches. One is on the left of \( x = 4 \) and the other is on the right of \( x = 4 \).
- Both branches approach a sharp point at \( x = 4 \), indicating a cusp.
**Interpretation for Differentiability:**
The function is not differentiable at \( x = 4 \) due to the cusp, where the slope is undefined. Therefore, the function is differentiable for \( x < 4 \) and \( x > 4 \), but not at \( x = 4 \).
**Interval Notation**:
The \( x \)-values at which \( f \) is differentiable are \( (-\infty, 4) \cup (4, \infty) \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F780b6083-5020-4aa3-b18c-d141fe1d9d16%2F6cac1ca8-60a3-4ecf-a9ae-c3240cee82fc%2Frpascnj_processed.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)