Describe the solutions of the first system of equations below in parametric vector form. Provide a geometric comparison with the solution set of the second system of equations below. 2x, +2x2 + 4x3 = 8 - 4x, - 4x2 - 8x3 = - 16 - 6x2 + 6x3 = 12 2x, +2x2 + 4x3 = 0 - 4x, - 4x2 - 8x3 = 0 - 6x2 + 6x3 = 0 X1 Describe the solution set, x= X2 of the first system of equations in parametric vector form. Select the correct choice below and fill in the answer box(es) within your X3 choice. (Type an integer or fraction for each matrix element.) O A. X= O B. X=X2 Oc. x= + X2 O D. X=X2 + X3
Describe the solutions of the first system of equations below in parametric vector form. Provide a geometric comparison with the solution set of the second system of equations below. 2x, +2x2 + 4x3 = 8 - 4x, - 4x2 - 8x3 = - 16 - 6x2 + 6x3 = 12 2x, +2x2 + 4x3 = 0 - 4x, - 4x2 - 8x3 = 0 - 6x2 + 6x3 = 0 X1 Describe the solution set, x= X2 of the first system of equations in parametric vector form. Select the correct choice below and fill in the answer box(es) within your X3 choice. (Type an integer or fraction for each matrix element.) O A. X= O B. X=X2 Oc. x= + X2 O D. X=X2 + X3
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Concept explainers
Equations and Inequations
Equations and inequalities describe the relationship between two mathematical expressions.
Linear Functions
A linear function can just be a constant, or it can be the constant multiplied with the variable like x or y. If the variables are of the form, x2, x1/2 or y2 it is not linear. The exponent over the variables should always be 1.
Question
![Describe the solutions of the first system of equations below in parametric vector form. Provide a geometric comparison with the solution set of the second system of equations below.
\[
\begin{align*}
2x_1 + 2x_2 + 4x_3 &= 8 \\
-4x_1 - 4x_2 - 8x_3 &= -16 \\
-6x_2 + 6x_3 &= 12 \\
\end{align*}
\]
\[
\begin{align*}
2x_1 + 2x_2 + 4x_3 &= 0 \\
-4x_1 - 4x_2 - 8x_3 &= 0 \\
6x_2 + 6x_3 &= 0 \\
\end{align*}
\]
Describe the solution set, \( \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \), of the first system of equations in parametric vector form. Select the correct choice below and fill in the answer box(es) within your choice.
(Type an integer or fraction for each matrix element.)
A. \( \mathbf{x} = \begin{bmatrix} \boxed{} \\ \boxed{} \\ \boxed{} \end{bmatrix} \)
B. \( \mathbf{x} = \begin{bmatrix} \boxed{} \\ x_2 \\\boxed{} \end{bmatrix} \)
C. \( \mathbf{x} = \begin{bmatrix} \boxed{} \\ \boxed{} \\ x_3 \end{bmatrix} \)
D. \( \mathbf{x} = \begin{bmatrix} \boxed{} \\ x_2 \\ \boxed{} + x_3 \end{bmatrix} \)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe5f558a7-14fc-4024-84d6-4debb1adc6f6%2F30b02500-c228-4fea-829e-3fdcd1b2ae26%2Fctxpv3e_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Describe the solutions of the first system of equations below in parametric vector form. Provide a geometric comparison with the solution set of the second system of equations below.
\[
\begin{align*}
2x_1 + 2x_2 + 4x_3 &= 8 \\
-4x_1 - 4x_2 - 8x_3 &= -16 \\
-6x_2 + 6x_3 &= 12 \\
\end{align*}
\]
\[
\begin{align*}
2x_1 + 2x_2 + 4x_3 &= 0 \\
-4x_1 - 4x_2 - 8x_3 &= 0 \\
6x_2 + 6x_3 &= 0 \\
\end{align*}
\]
Describe the solution set, \( \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \), of the first system of equations in parametric vector form. Select the correct choice below and fill in the answer box(es) within your choice.
(Type an integer or fraction for each matrix element.)
A. \( \mathbf{x} = \begin{bmatrix} \boxed{} \\ \boxed{} \\ \boxed{} \end{bmatrix} \)
B. \( \mathbf{x} = \begin{bmatrix} \boxed{} \\ x_2 \\\boxed{} \end{bmatrix} \)
C. \( \mathbf{x} = \begin{bmatrix} \boxed{} \\ \boxed{} \\ x_3 \end{bmatrix} \)
D. \( \mathbf{x} = \begin{bmatrix} \boxed{} \\ x_2 \\ \boxed{} + x_3 \end{bmatrix} \)
![**Question 1:**
Construct a nonzero \(2 \times 2\) matrix \(A\) such that the solution set of the equation \(Ax = 0\) is the line in \(\mathbb{R}^2\) through (6,1) and the origin. Then, find a vector \(b\) in \(\mathbb{R}^2\) such that the solution set of \(Ax = b\) is not a line in \(\mathbb{R}^2\) parallel to the solution set of \(Ax = 0\). Why does this not contradict the theorem that states that if the equation \(Ax = b\) is consistent for some given \(b\) and \(p\) is a solution, then the solution set of \(Ax = b\) is the set of all vectors of the form \(w = p + v_h\), where \(v_h\) is any solution of the homogeneous equation \(Ax = 0\)?
---
**Question 2:**
Construct a nonzero \(2 \times 2\) matrix \(A\) such that the solution set of the equation \(Ax = 0\) is the line in \(\mathbb{R}^2\) through (6,1) and the origin. Choose the correct answer below:
- \( \text{A.} \quad \begin{bmatrix} 1 & 6 \\ 1 & 6 \end{bmatrix} \)
- \( \text{B.} \quad \begin{bmatrix} 1 & 1 \\ 6 & 6 \end{bmatrix} \)
- \( \text{C.} \quad \begin{bmatrix} 1 & -6 \\ 1 & -6 \end{bmatrix} \)
- \( \text{D.} \quad \begin{bmatrix} 1 & 1 \\ -6 & -6 \end{bmatrix} \)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe5f558a7-14fc-4024-84d6-4debb1adc6f6%2F30b02500-c228-4fea-829e-3fdcd1b2ae26%2Fwpvkeyd_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Question 1:**
Construct a nonzero \(2 \times 2\) matrix \(A\) such that the solution set of the equation \(Ax = 0\) is the line in \(\mathbb{R}^2\) through (6,1) and the origin. Then, find a vector \(b\) in \(\mathbb{R}^2\) such that the solution set of \(Ax = b\) is not a line in \(\mathbb{R}^2\) parallel to the solution set of \(Ax = 0\). Why does this not contradict the theorem that states that if the equation \(Ax = b\) is consistent for some given \(b\) and \(p\) is a solution, then the solution set of \(Ax = b\) is the set of all vectors of the form \(w = p + v_h\), where \(v_h\) is any solution of the homogeneous equation \(Ax = 0\)?
---
**Question 2:**
Construct a nonzero \(2 \times 2\) matrix \(A\) such that the solution set of the equation \(Ax = 0\) is the line in \(\mathbb{R}^2\) through (6,1) and the origin. Choose the correct answer below:
- \( \text{A.} \quad \begin{bmatrix} 1 & 6 \\ 1 & 6 \end{bmatrix} \)
- \( \text{B.} \quad \begin{bmatrix} 1 & 1 \\ 6 & 6 \end{bmatrix} \)
- \( \text{C.} \quad \begin{bmatrix} 1 & -6 \\ 1 & -6 \end{bmatrix} \)
- \( \text{D.} \quad \begin{bmatrix} 1 & 1 \\ -6 & -6 \end{bmatrix} \)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)