Describe all solutions of Ax = 0 in parametric vector form, where A is row equivalent to the given matrix.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Educational Content: Parametric Vector Form Solutions**

**Task:**
Describe all solutions of \( Ax = 0 \) in parametric vector form, where \( A \) is row equivalent to the given matrix.

**Matrix:**

\[
\begin{bmatrix}
3 & -6 & 9 \\
-1 & 2 & -3
\end{bmatrix}
\]

**Solution Representation:**

The solution \( x \) is expressed as:
\[
x = x_2 
\begin{bmatrix}
\Box \\
\Box \\
\Box
\end{bmatrix}
+
x_3 
\begin{bmatrix}
\Box \\
\Box \\
\Box
\end{bmatrix}
\]

*(Type an integer or fraction for each matrix element.)*

**Explanation:**

- The matrix shown is a \(2 \times 3\) matrix, which means it represents a system of two linear equations with three variables.
- The task is to express the solution set of these equations in terms of free variables \( x_2 \) and \( x_3 \).
- The parametric vector form will involve expressing the solution vector \( x \) as a linear combination of the free variables multiplied by their respective vectors. Filling in the boxes will provide a complete description of the solutions.
Transcribed Image Text:**Educational Content: Parametric Vector Form Solutions** **Task:** Describe all solutions of \( Ax = 0 \) in parametric vector form, where \( A \) is row equivalent to the given matrix. **Matrix:** \[ \begin{bmatrix} 3 & -6 & 9 \\ -1 & 2 & -3 \end{bmatrix} \] **Solution Representation:** The solution \( x \) is expressed as: \[ x = x_2 \begin{bmatrix} \Box \\ \Box \\ \Box \end{bmatrix} + x_3 \begin{bmatrix} \Box \\ \Box \\ \Box \end{bmatrix} \] *(Type an integer or fraction for each matrix element.)* **Explanation:** - The matrix shown is a \(2 \times 3\) matrix, which means it represents a system of two linear equations with three variables. - The task is to express the solution set of these equations in terms of free variables \( x_2 \) and \( x_3 \). - The parametric vector form will involve expressing the solution vector \( x \) as a linear combination of the free variables multiplied by their respective vectors. Filling in the boxes will provide a complete description of the solutions.
**Matrix Problem Description**

Consider the task to describe all solutions of \( \mathbf{Ax} = \mathbf{0} \) in parametric vector form, where \(\mathbf{A}\) is row equivalent to the given matrix:

\[
\begin{bmatrix}
1 & 5 & -3 & -1 & 0 & 6 \\
0 & 0 & 1 & 0 & 0 & 4 \\
0 & 0 & 0 & 1 & 0 & -4 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

**Solution Vector Formulation**

We express the solution vector \( \mathbf{x} \) in terms of free variables \( x_2, x_5, \) and \( x_6 \):

\[
\mathbf{x} = x_2 \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + x_5 \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + x_6 \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix}
\]

*(Type an integer or fraction for each matrix element.)*

This setup initiates the process to find the parametric vector form solution where \( x_2, x_5, \) and \( x_6 \) are the parameters. These steps require solving the matrix to determine each vector component's contribution from the free variables.
Transcribed Image Text:**Matrix Problem Description** Consider the task to describe all solutions of \( \mathbf{Ax} = \mathbf{0} \) in parametric vector form, where \(\mathbf{A}\) is row equivalent to the given matrix: \[ \begin{bmatrix} 1 & 5 & -3 & -1 & 0 & 6 \\ 0 & 0 & 1 & 0 & 0 & 4 \\ 0 & 0 & 0 & 1 & 0 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \] **Solution Vector Formulation** We express the solution vector \( \mathbf{x} \) in terms of free variables \( x_2, x_5, \) and \( x_6 \): \[ \mathbf{x} = x_2 \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + x_5 \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + x_6 \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} \] *(Type an integer or fraction for each matrix element.)* This setup initiates the process to find the parametric vector form solution where \( x_2, x_5, \) and \( x_6 \) are the parameters. These steps require solving the matrix to determine each vector component's contribution from the free variables.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Matrix Factorization
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,