• Derive the following equation of maximum deflection using double integration method. (for type of loading see slide 7-12). Po MI² 6max = (F-') 120EI 2EI ({1* - 48°) at the center, if a>b 48EI PP MI WL3 SEI 48EI 9/3 EI 384EI MI at the center 16EI wL dmax 764EI WL3 6max 30EI at x = 0.475L 192EI Deflection in Simply Supported Beams Px y = -(31 – x) 6EI PI max 3EI Pa 3a-x) for 0

Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Make your solution as clear as possible, please
• Derive the following equation of maximum deflection using double
integration method. (for type of loading see slide 7-12).
M
6max
at x=
120EI
2EI
at x
Pb
(31* - 46') at the center, if a >b
48EI
PP
MI?
WL3
at Y=
SEI
48EI
9/3 EI
384EI
at the center
16EI
wL
Omax 764EI
W L3
8max
30EI
192EI
at x = 0.475L
Deflection in Simply Supported Beams
1.
Px
(31 – x) 8̟
6EI
max
3EI
Pa
Pr
y=(3a - x) for 0<x<a
6EI
Pa
y=-
(3x-a) for a<x<l
6EI
3
%3D
y=-
24EI
SEI
120NET
30EI
5.
Mx?
M²
y:
2EI
max
2EI
6.
Pi
8.
48EI
Pr
for 0<r<-
12EI
Transcribed Image Text:• Derive the following equation of maximum deflection using double integration method. (for type of loading see slide 7-12). M 6max at x= 120EI 2EI at x Pb (31* - 46') at the center, if a >b 48EI PP MI? WL3 at Y= SEI 48EI 9/3 EI 384EI at the center 16EI wL Omax 764EI W L3 8max 30EI 192EI at x = 0.475L Deflection in Simply Supported Beams 1. Px (31 – x) 8̟ 6EI max 3EI Pa Pr y=(3a - x) for 0<x<a 6EI Pa y=- (3x-a) for a<x<l 6EI 3 %3D y=- 24EI SEI 120NET 30EI 5. Mx? M² y: 2EI max 2EI 6. Pi 8. 48EI Pr for 0<r<- 12EI
7.
0,
10,
Pbx
(1² -x²-b') for 0<x<a
y =
Mlx
1
6EI
6IEI
Pb [1
y=
6IEI b
%3D
for a<x<l
MI?
at x=
9/3 EI
at x=
N3 IEI
MI?
Pb
-(31 - 46') at the center, if a >b
48EI
at the center
16EI
10.
OX
y =
24EI
(P - 2h² +x') }=
360)ET
O = 0.00652
at x= 0.5191
EI
%3D
max
384EI
ô=0.00651"
at the center
EI
11.
wL
ômax
1 20EI
AT
at x =
wa363
12.
3EI L3
a b=L
13.Total W = wL
WL3
384EI
14.
w = N/m
Smax 764EI
at x = 0.475L
15. W
W.
W 13
&max
192EI
R,
16
W L3
&max
R1
384EI
Transcribed Image Text:7. 0, 10, Pbx (1² -x²-b') for 0<x<a y = Mlx 1 6EI 6IEI Pb [1 y= 6IEI b %3D for a<x<l MI? at x= 9/3 EI at x= N3 IEI MI? Pb -(31 - 46') at the center, if a >b 48EI at the center 16EI 10. OX y = 24EI (P - 2h² +x') }= 360)ET O = 0.00652 at x= 0.5191 EI %3D max 384EI ô=0.00651" at the center EI 11. wL ômax 1 20EI AT at x = wa363 12. 3EI L3 a b=L 13.Total W = wL WL3 384EI 14. w = N/m Smax 764EI at x = 0.475L 15. W W. W 13 &max 192EI R, 16 W L3 &max R1 384EI
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Material selection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning