Derive 13.4 to 13.6 (Arfken's approach) please show complete solution

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Derive 13.4 to 13.6 (Arfken's approach) please show complete solution
Gamma Function (Chapter 13)
To set up the properties of the gamma function, the following
definitions must be used:
1) Infinite limit (Euler)
I(z) =
Consider z→→z+1
1.2.3. n
nco (z + 1)(z+2)(z + 3) (z+1+n)
1.2.3... n
nz
= lim
-n²
n→∞ (z+1+n) z(z + 1)(z + 2)(z + 3). (z+n)'
T(z + 1) = lim
Arfken, G., Weber, H., and Harris, F. (2013). Mathematical Methods for Physicists (7 od.). Elsevier.
1.2.3...n
lim
n→∞ z(z + 1)(z+2)... (z+n)
z 0,-1, -2, -3,...
(13.1)
r(1) = lim
In general,
I(z + 1)
nz
1.2.3...n
= lim
-n²
no (z+1+n) z(z + 1)(z + 2)(z + 3) (z+n)
= zl(z) (13.2)
From the definition
I(z) =
1.2.3...n
Ariken, G., Weber, H., and Harris, F. (2013). Mathematical Methods for Physicists (7a ed.). Elsevier.
2) Definite integral (Euler)
no 1.2.3 n(n+1)
r(2) = 1
r(3) = 2r(2) = 2
r(4) = 3r(2) = 3·2=6 so on.
I(n) = 1.2.3 (n-1)=(n-1)! (13.4).
r(z) = 2
=
00
Transform using t = u² and dt = 2u du,
= -
e-u²u²z-2 2udu
n = 1
-n²,
[(z) =
e-t²-1 dt, Re(z) 0 (13.5).
00
₂-u²,
²u²z-1 du,
e
(13.3)
Re(z) > 0
-n²+1
(13.6)
10
Transcribed Image Text:Gamma Function (Chapter 13) To set up the properties of the gamma function, the following definitions must be used: 1) Infinite limit (Euler) I(z) = Consider z→→z+1 1.2.3. n nco (z + 1)(z+2)(z + 3) (z+1+n) 1.2.3... n nz = lim -n² n→∞ (z+1+n) z(z + 1)(z + 2)(z + 3). (z+n)' T(z + 1) = lim Arfken, G., Weber, H., and Harris, F. (2013). Mathematical Methods for Physicists (7 od.). Elsevier. 1.2.3...n lim n→∞ z(z + 1)(z+2)... (z+n) z 0,-1, -2, -3,... (13.1) r(1) = lim In general, I(z + 1) nz 1.2.3...n = lim -n² no (z+1+n) z(z + 1)(z + 2)(z + 3) (z+n) = zl(z) (13.2) From the definition I(z) = 1.2.3...n Ariken, G., Weber, H., and Harris, F. (2013). Mathematical Methods for Physicists (7a ed.). Elsevier. 2) Definite integral (Euler) no 1.2.3 n(n+1) r(2) = 1 r(3) = 2r(2) = 2 r(4) = 3r(2) = 3·2=6 so on. I(n) = 1.2.3 (n-1)=(n-1)! (13.4). r(z) = 2 = 00 Transform using t = u² and dt = 2u du, = - e-u²u²z-2 2udu n = 1 -n², [(z) = e-t²-1 dt, Re(z) 0 (13.5). 00 ₂-u², ²u²z-1 du, e (13.3) Re(z) > 0 -n²+1 (13.6) 10
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,