Derive 13.4 to 13.6 (Arfken's approach) please show complete solution
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Derive 13.4 to 13.6
(Arfken's approach) please show complete solution

Transcribed Image Text:Gamma Function (Chapter 13)
To set up the properties of the gamma function, the following
definitions must be used:
1) Infinite limit (Euler)
I(z) =
Consider z→→z+1
1.2.3. n
nco (z + 1)(z+2)(z + 3) (z+1+n)
1.2.3... n
nz
= lim
-n²
n→∞ (z+1+n) z(z + 1)(z + 2)(z + 3). (z+n)'
T(z + 1) = lim
Arfken, G., Weber, H., and Harris, F. (2013). Mathematical Methods for Physicists (7 od.). Elsevier.
1.2.3...n
lim
n→∞ z(z + 1)(z+2)... (z+n)
z 0,-1, -2, -3,...
(13.1)
r(1) = lim
In general,
I(z + 1)
nz
1.2.3...n
= lim
-n²
no (z+1+n) z(z + 1)(z + 2)(z + 3) (z+n)
= zl(z) (13.2)
From the definition
I(z) =
1.2.3...n
Ariken, G., Weber, H., and Harris, F. (2013). Mathematical Methods for Physicists (7a ed.). Elsevier.
2) Definite integral (Euler)
no 1.2.3 n(n+1)
r(2) = 1
r(3) = 2r(2) = 2
r(4) = 3r(2) = 3·2=6 so on.
I(n) = 1.2.3 (n-1)=(n-1)! (13.4).
r(z) = 2
=
00
Transform using t = u² and dt = 2u du,
= -
e-u²u²z-2 2udu
n = 1
-n²,
[(z) =
e-t²-1 dt, Re(z) 0 (13.5).
00
₂-u²,
²u²z-1 du,
e
(13.3)
Re(z) > 0
-n²+1
(13.6)
10
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 3 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

