Deimos, one of Mars's moons, has a mass of about 2.0 x 10¹5 kg and a diameter of about 12 km. An astronaut standing on the surface of Deimos wants to see if she can throw a baseball all the way around the moon. a. At what speed (in miles/hour) would she have to throw the ball so that it would move in a circular orbit just above the surface of the moon? (Assume Deimos is spherical.) b. How long would it take (in hours) before the ball returned to her if she threw it at the speed you found in part (a)? c. What is the free-fall acceleration g for Deimos, in m/s²?

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question
5. Deimos, one of Mars's moons, has a mass of about 2.0 x 10¹5 kg and a diameter of about 12 km. An
astronaut standing on the surface of Deimos wants to see if she can throw a baseball all the way
around the moon.
a. At what speed (in miles/hour) would she have to throw the ball so that it would move in a
circular orbit just above the surface of the moon? (Assume Deimos is spherical.)
b.
How long would it take (in hours) before the ball returned to her if she threw it at the speed
you found in part (a)?
c.
What is the free-fall acceleration g for Deimos, in m/s²?
Transcribed Image Text:5. Deimos, one of Mars's moons, has a mass of about 2.0 x 10¹5 kg and a diameter of about 12 km. An astronaut standing on the surface of Deimos wants to see if she can throw a baseball all the way around the moon. a. At what speed (in miles/hour) would she have to throw the ball so that it would move in a circular orbit just above the surface of the moon? (Assume Deimos is spherical.) b. How long would it take (in hours) before the ball returned to her if she threw it at the speed you found in part (a)? c. What is the free-fall acceleration g for Deimos, in m/s²?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Gravitational Force
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON