Definition: If A, B € Matnxn (C), we say A and B are conjugate if there is an invertible matrix CE Matnxn (C) such that C-¹AC = B. a) Prove that the relation~ defined by A~ B if and only if A and B are conjugate is an equivalence relation on the set Matnxn(C). b) If A and B are conjugate, prove that PA (t) = PB(t), that is, A and B have the same characteristic polynomial. c) If A and B are conjugate, prove det(A) = det(B). Give an example to show that the converse does not hold.
Definition: If A, B € Matnxn (C), we say A and B are conjugate if there is an invertible matrix CE Matnxn (C) such that C-¹AC = B. a) Prove that the relation~ defined by A~ B if and only if A and B are conjugate is an equivalence relation on the set Matnxn(C). b) If A and B are conjugate, prove that PA (t) = PB(t), that is, A and B have the same characteristic polynomial. c) If A and B are conjugate, prove det(A) = det(B). Give an example to show that the converse does not hold.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please answer a), b) , c) and d)
![Definition:
If A, B € Matnxn (C), we say A and B are conjugate if there is an invertible matrix CE Matnxn (C)
such that C-¹AC = B.
a) Prove that the relation~ defined by A~ B if and only if A and B are conjugate is an equivalence
relation on the set Matnxn (C).
b) If A and B are conjugate, prove that P₁(t) = PB(t), that is, A and B have the same characteristic
polynomial.
c) If A and B are conjugate, prove det(A) = det (B). Give an example to show that the converse
does not hold.
that consist of matrices with
d) Show that there are at least n equivalences classes of the relation
determinant 0.
(Hint: You may use part (b) even if you did not solve it.)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc43bd3e6-5b65-4fb3-8d46-54613faca65d%2Fa9510d1a-625c-46bc-aafc-a0328236513f%2Fd39al1l_processed.png&w=3840&q=75)
Transcribed Image Text:Definition:
If A, B € Matnxn (C), we say A and B are conjugate if there is an invertible matrix CE Matnxn (C)
such that C-¹AC = B.
a) Prove that the relation~ defined by A~ B if and only if A and B are conjugate is an equivalence
relation on the set Matnxn (C).
b) If A and B are conjugate, prove that P₁(t) = PB(t), that is, A and B have the same characteristic
polynomial.
c) If A and B are conjugate, prove det(A) = det (B). Give an example to show that the converse
does not hold.
that consist of matrices with
d) Show that there are at least n equivalences classes of the relation
determinant 0.
(Hint: You may use part (b) even if you did not solve it.)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 8 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)