Define the linear transformation T by T(x) = Ax. Find ker(T), nullity(T), range(T), and rank(T). 0 -3 2 A 6. 011 (a) ker(T) (If there are an infinite number of solutions use t as your parameter.) (b) nullity(7) (c) range(T) O R2 O {(s, 0): s is any real number} O {(6s, 3t, 11s – 2t): s, t are any real number} O {(0, t): t is any real number} O R3 (d) rank(T)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Define the linear transformation \( T \) by \( T(x) = Ax \). Find \(\ker(T)\), \(\text{nullity}(T)\), \(\text{range}(T)\), and \(\text{rank}(T)\).

\[ 
A = \begin{bmatrix} 0 & -3 & 2 \\ 6 & 0 & 11 \end{bmatrix} 
\]

(a) \(\ker(T)\) (If there are an infinite number of solutions use \( t \) as your parameter.)

\[
\left\{ \begin{array}{c} \end{array} \right\}
\]

(b) \(\text{nullity}(T)\)

\[
\begin{array}{c} \end{array}
\]

(c) \(\text{range}(T)\)

- \( \mathbb{R}^2 \)
- \(\{(s, 0): s \text{ is any real number}\}\)
- \(\{(6s, 3t, 11s - 2t): s, t \text{ are any real number}\}\)
- \(\{(0, t): t \text{ is any real number}\}\)
- \( \mathbb{R}^3 \)

(d) \(\text{rank}(T)\)

\[
\begin{array}{c} \end{array}
\]
Transcribed Image Text:Define the linear transformation \( T \) by \( T(x) = Ax \). Find \(\ker(T)\), \(\text{nullity}(T)\), \(\text{range}(T)\), and \(\text{rank}(T)\). \[ A = \begin{bmatrix} 0 & -3 & 2 \\ 6 & 0 & 11 \end{bmatrix} \] (a) \(\ker(T)\) (If there are an infinite number of solutions use \( t \) as your parameter.) \[ \left\{ \begin{array}{c} \end{array} \right\} \] (b) \(\text{nullity}(T)\) \[ \begin{array}{c} \end{array} \] (c) \(\text{range}(T)\) - \( \mathbb{R}^2 \) - \(\{(s, 0): s \text{ is any real number}\}\) - \(\{(6s, 3t, 11s - 2t): s, t \text{ are any real number}\}\) - \(\{(0, t): t \text{ is any real number}\}\) - \( \mathbb{R}^3 \) (d) \(\text{rank}(T)\) \[ \begin{array}{c} \end{array} \]
Expert Solution
steps

Step by step

Solved in 2 steps with 5 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,