Define a class for complex numbers. A complex number is a number of the form a + b*i where for our purposes, a and b are numbers of type double, and i is a number that represents the quantity √-1. Represent a complex number as two values of type double. Name the member variables real and imaginary. (The variable for the number that is multiplied by i is the one called imaginary.) Call the class Complex. Include a constructor with two parameters of type double that can be used to set the member variables of an object to any values. Include a constructor that has only a single parameter of type double; call this parameter realPart and define the constructor so that the object will be initialized to realPart + 0*i.Include a default constructor that initializes an object to 0 (that is, to 0 + 0*i).Overload all the following operators so that they correctly apply to the type Complex: ==, +, −, *, >>, and <<. You should also write a test program to test your class. Hints: To add or subtract two complex numbers, add or subtract the two member variables of type double. The product of two complex numbers is given by the following formula: (a + b*i)*(c + d*i) = = (a*c - b*d ) + (a*d + b*c)*iIn the interface file, you should define a constant i as follows:const Complex i(0, 1); This defined constant i will be the same as the i discussed above.
OOPs
In today's technology-driven world, computer programming skills are in high demand. The object-oriented programming (OOP) approach is very much useful while designing and maintaining software programs. Object-oriented programming (OOP) is a basic programming paradigm that almost every developer has used at some stage in their career.
Constructor
The easiest way to think of a constructor in object-oriented programming (OOP) languages is:
Define a class for complex numbers. A complex number is a number of the form a + b*i
where for our purposes, a and b are numbers of type double, and i is a number that represents the quantity √-1. Represent a complex number as two values of type double. Name the member variables real and imaginary. (The variable for the number that is multiplied by i is the one called imaginary.) Call the class Complex. Include a constructor with two parameters of type double that can be used to set the member variables of an object to any values. Include a constructor that has only a single parameter of type double; call this parameter realPart and define the constructor so that the object will be initialized to realPart + 0*i.
Include a default constructor that initializes an object to 0 (that is, to 0 + 0*i).
Overload all the following operators so that they correctly apply to the type Complex: ==, +, −, *, >>, and <<. You should also write a test program to test your class. Hints: To add or subtract two complex numbers, add or subtract the two member variables of type double. The product of two complex numbers is given by the following formula:
(a + b*i)*(c + d*i) = = (a*c - b*d ) + (a*d + b*c)*i
In the interface file, you should define a constant i as follows:
const Complex i(0, 1); This defined constant i will be the same as the i discussed above.
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Database System Concepts](https://www.bartleby.com/isbn_cover_images/9780078022159/9780078022159_smallCoverImage.jpg)
![Starting Out with Python (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134444321/9780134444321_smallCoverImage.gif)
![Digital Fundamentals (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780132737968/9780132737968_smallCoverImage.gif)
![Database System Concepts](https://www.bartleby.com/isbn_cover_images/9780078022159/9780078022159_smallCoverImage.jpg)
![Starting Out with Python (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134444321/9780134444321_smallCoverImage.gif)
![Digital Fundamentals (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780132737968/9780132737968_smallCoverImage.gif)
![C How to Program (8th Edition)](https://www.bartleby.com/isbn_cover_images/9780133976892/9780133976892_smallCoverImage.gif)
![Database Systems: Design, Implementation, & Manag…](https://www.bartleby.com/isbn_cover_images/9781337627900/9781337627900_smallCoverImage.gif)
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)