Deduce that if (b) Let a 2 cos 2 and ß = 2 cos 4. Show that a = @ +w4 and B=w² +0³. Find a quadratic equation with roots a,ß. Hence show that 27=(√5-1). 7. (a) Show that x-1=(x-1)(x²+x³+x²+x+1). @=e2ri/5 then w²+w³+w²+w+1=0. COS
Deduce that if (b) Let a 2 cos 2 and ß = 2 cos 4. Show that a = @ +w4 and B=w² +0³. Find a quadratic equation with roots a,ß. Hence show that 27=(√5-1). 7. (a) Show that x-1=(x-1)(x²+x³+x²+x+1). @=e2ri/5 then w²+w³+w²+w+1=0. COS
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![-
7. (a) Show that x − 1 = (x − 1)(x² + x³+x²+x+1). Deduce that if
@=e²i/5 then w4+w³+w²+w+1=0.
(b) Let a =
= 2 cos 2 and ß = 2 cos 4. Show that a = @ + 04 and
ß = ²+w³. Find a quadratic equation with roots a,ß. Hence show
that
=(√5-1).
COS
2π
5](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc6389447-1237-4af0-b5c6-eb1260425b55%2F2df3cb65-1ee7-423e-96f5-4120c331e178%2Frwxbymr_processed.png&w=3840&q=75)
Transcribed Image Text:-
7. (a) Show that x − 1 = (x − 1)(x² + x³+x²+x+1). Deduce that if
@=e²i/5 then w4+w³+w²+w+1=0.
(b) Let a =
= 2 cos 2 and ß = 2 cos 4. Show that a = @ + 04 and
ß = ²+w³. Find a quadratic equation with roots a,ß. Hence show
that
=(√5-1).
COS
2π
5
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)