da Use a trig substitution to evaluate (22 +4)2"

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question

2

**Title: Evaluating an Integral Using Trigonometric Substitution**

**Problem Statement:**

Use a trigonometric substitution to evaluate the integral:

\[ \int \frac{dx}{(x^2 + 4)^2} \] 

**Solution Outline:**

To solve the integral \(\int \frac{dx}{(x^2 + 4)^2}\) using trigonometric substitution, follow these steps:

1. **Identify the Trigonometric Substitution:**
   - For integrals involving \(\sqrt{x^2 + a^2}\), use the substitution \(x = a \tan(\theta)\).
   - In this problem, \(x^2 + 4\) fits the form with \(a^2 = 4\) (i.e., \(a = 2\)).
   - Hence, we use the substitution \(x = 2 \tan(\theta)\).

2. **Calculate the Differential (dx):**
   - With \(x = 2 \tan(\theta)\), \(dx = 2 \sec^2(\theta) d\theta\).

3. **Substitute into the Integral:**
   - Substituting \(x = 2 \tan(\theta)\) and \(dx = 2 \sec^2(\theta) d\theta\) into the integral:
   \[
   \int \frac{2 \sec^2(\theta) d\theta}{(4 \tan^2(\theta) + 4)^2}
   \]
   - Simplify the denominator:
   \[
   4 \tan^2(\theta) + 4 = 4 (\tan^2(\theta) + 1) = 4 \sec^2(\theta)
   \]
   - Therefore, the integral becomes:
   \[
   \int \frac{2 \sec^2(\theta) d\theta}{(4 \sec^2(\theta))^2} = \int \frac{2 \sec^2(\theta) d\theta}{16 \sec^4(\theta)}
   \]
   - Simplify further:
   \[
   \int \frac{2 \sec^2(\theta) d\theta}{16 \sec^4(\theta)} = \int \frac{2 d\theta}{16 \sec^2(\theta)} = \frac{1}{8}
Transcribed Image Text:**Title: Evaluating an Integral Using Trigonometric Substitution** **Problem Statement:** Use a trigonometric substitution to evaluate the integral: \[ \int \frac{dx}{(x^2 + 4)^2} \] **Solution Outline:** To solve the integral \(\int \frac{dx}{(x^2 + 4)^2}\) using trigonometric substitution, follow these steps: 1. **Identify the Trigonometric Substitution:** - For integrals involving \(\sqrt{x^2 + a^2}\), use the substitution \(x = a \tan(\theta)\). - In this problem, \(x^2 + 4\) fits the form with \(a^2 = 4\) (i.e., \(a = 2\)). - Hence, we use the substitution \(x = 2 \tan(\theta)\). 2. **Calculate the Differential (dx):** - With \(x = 2 \tan(\theta)\), \(dx = 2 \sec^2(\theta) d\theta\). 3. **Substitute into the Integral:** - Substituting \(x = 2 \tan(\theta)\) and \(dx = 2 \sec^2(\theta) d\theta\) into the integral: \[ \int \frac{2 \sec^2(\theta) d\theta}{(4 \tan^2(\theta) + 4)^2} \] - Simplify the denominator: \[ 4 \tan^2(\theta) + 4 = 4 (\tan^2(\theta) + 1) = 4 \sec^2(\theta) \] - Therefore, the integral becomes: \[ \int \frac{2 \sec^2(\theta) d\theta}{(4 \sec^2(\theta))^2} = \int \frac{2 \sec^2(\theta) d\theta}{16 \sec^4(\theta)} \] - Simplify further: \[ \int \frac{2 \sec^2(\theta) d\theta}{16 \sec^4(\theta)} = \int \frac{2 d\theta}{16 \sec^2(\theta)} = \frac{1}{8}
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

Advanced Math homework question answer, step 1, image 2

Advanced Math homework question answer, step 1, image 3

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Knowledge Booster
Discrete Probability Distributions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,