D. f(x) = In x + 2e - 3x2

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
icon
Concept explainers
Question
#20)
### Logarithmic and Derivative Problems

#### Logarithmic Problems

1. \( y = \log_3 81 \)
2. \( y = \log_4 64 \)
3. \( \log_5 x = -1 \)
4. \( \log_{10} x = -3 \)
5. \( y = \ln \sqrt[3]{e} \)
6. \( \ln x = 2 \)

#### Use Logarithmic Properties to Simplify

7. \( \ln \frac{x}{y} \)
8. \( \ln e^x \)
9. \( \ln x^5 \)
10. \( \ln xy \)
11. \( \ln \frac{uv^2}{w} \)
12. \( \ln \frac{u^2}{v^{\frac{3}{w}}} \)

#### Derivative Problems

In Problems 13-30, find \( f'(x) \).

13. \( f(x) = 5e^x + 3x + 1 \)
14. \( f(x) = -7e^x - 2x + 5 \)
15. \( f(x) = x^2 - 2 \ln x - 4 \)
16. \( f(x) = 6 \ln x - x^3 + 2 \)
17. \( f(x) = x^3 - 6e^x \)
18. \( f(x) = 9e^x + 2x^2 \)
19. \( f(x) = e^x + x - \ln x \)
20. \( f(x) = \ln x + 2e^x - 3x^2 \)
21. \( f(x) = \ln x^3 \)
22. \( f(x) = \ln x^8 \)
23. \( f(x) = 5x - \ln x^5 \)
24. \( f(x) = 4 + \ln x^9 \)
25. \( f(x) = \ln x^2 + 4e^x \)
26. \( f(x) = \ln x^{10} + 2 \ln x \)
27. \( f(x) = e^x + x^e \)
28. \( f(x) = 3xe
Transcribed Image Text:### Logarithmic and Derivative Problems #### Logarithmic Problems 1. \( y = \log_3 81 \) 2. \( y = \log_4 64 \) 3. \( \log_5 x = -1 \) 4. \( \log_{10} x = -3 \) 5. \( y = \ln \sqrt[3]{e} \) 6. \( \ln x = 2 \) #### Use Logarithmic Properties to Simplify 7. \( \ln \frac{x}{y} \) 8. \( \ln e^x \) 9. \( \ln x^5 \) 10. \( \ln xy \) 11. \( \ln \frac{uv^2}{w} \) 12. \( \ln \frac{u^2}{v^{\frac{3}{w}}} \) #### Derivative Problems In Problems 13-30, find \( f'(x) \). 13. \( f(x) = 5e^x + 3x + 1 \) 14. \( f(x) = -7e^x - 2x + 5 \) 15. \( f(x) = x^2 - 2 \ln x - 4 \) 16. \( f(x) = 6 \ln x - x^3 + 2 \) 17. \( f(x) = x^3 - 6e^x \) 18. \( f(x) = 9e^x + 2x^2 \) 19. \( f(x) = e^x + x - \ln x \) 20. \( f(x) = \ln x + 2e^x - 3x^2 \) 21. \( f(x) = \ln x^3 \) 22. \( f(x) = \ln x^8 \) 23. \( f(x) = 5x - \ln x^5 \) 24. \( f(x) = 4 + \ln x^9 \) 25. \( f(x) = \ln x^2 + 4e^x \) 26. \( f(x) = \ln x^{10} + 2 \ln x \) 27. \( f(x) = e^x + x^e \) 28. \( f(x) = 3xe
### Problem 20: Function Analysis

**Function Definition:**
\[ f(x) = \ln x + 2e^x - 3x^2 \]

**Explanation:**

The function \( f(x) \) is a combination of three distinct mathematical expressions:
1. **Natural Logarithm (\( \ln x \))**: This term is defined for \( x > 0 \) and describes the logarithm of \( x \) to the base \( e \), where \( e \approx 2.718 \).
2. **Exponential Term (\( 2e^x \))**: Here, \( e^x \) represents the exponential function with a coefficient of 2. This function grows rapidly as \( x \) increases.
3. **Quadratic Term (\( -3x^2 \))**: This is a polynomial term where the variable \( x \) is squared and multiplied by -3, producing a parabolic shape that opens downwards due to the negative coefficient.

**Key Characteristics to Explore:**
- **Domain**: \( x > 0 \) because the natural logarithm is only defined for positive \( x \).
- **Behavior**: Analyze how each part of the function contributes to the overall shape. The combination of logarithmic growth, exponential increase, and a downward-opening parabola results in a unique curve.
- **Critical Points & Intervals**: Determine where the derivative \( f'(x) \) is zero or undefined to locate maxima, minima, and points of inflection.
- **Graphical Representation**: Sketching or using graphical software can provide insights into the function's behavior over specific intervals.

This function offers an excellent opportunity to practice calculus concepts such as differentiation and curve sketching.
Transcribed Image Text:### Problem 20: Function Analysis **Function Definition:** \[ f(x) = \ln x + 2e^x - 3x^2 \] **Explanation:** The function \( f(x) \) is a combination of three distinct mathematical expressions: 1. **Natural Logarithm (\( \ln x \))**: This term is defined for \( x > 0 \) and describes the logarithm of \( x \) to the base \( e \), where \( e \approx 2.718 \). 2. **Exponential Term (\( 2e^x \))**: Here, \( e^x \) represents the exponential function with a coefficient of 2. This function grows rapidly as \( x \) increases. 3. **Quadratic Term (\( -3x^2 \))**: This is a polynomial term where the variable \( x \) is squared and multiplied by -3, producing a parabolic shape that opens downwards due to the negative coefficient. **Key Characteristics to Explore:** - **Domain**: \( x > 0 \) because the natural logarithm is only defined for positive \( x \). - **Behavior**: Analyze how each part of the function contributes to the overall shape. The combination of logarithmic growth, exponential increase, and a downward-opening parabola results in a unique curve. - **Critical Points & Intervals**: Determine where the derivative \( f'(x) \) is zero or undefined to locate maxima, minima, and points of inflection. - **Graphical Representation**: Sketching or using graphical software can provide insights into the function's behavior over specific intervals. This function offers an excellent opportunity to practice calculus concepts such as differentiation and curve sketching.
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Points, Lines and Planes
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning