d. Change variables and evaluate the new integral. SSx²√x + 7y dA, where R= R y = 6v-u. X 0≤x≤7,-≤y≤6- where R=(x,y): 0≤x≤7, {(x,y): >; use x = 7u, u

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Need help with d. 

# Evaluating a Double Integral with Change of Variables

To evaluate the following integral, carry out these steps:

### a. Sketch the Original Region and the New Region
- **Original Region in the xy-plane**: \( R = \{ (x,y): 0 \leq x \leq 7, -\frac{x}{7} \leq y \leq 6-x \} \)
- **New Region in the uv-plane**: Use the change of variables \( x = 7u \) and \( y = 6v - u \).

### b. Find the Limits of Integration
- For \( u \): \( 0 \leq u \leq 1 \)
- For \( v \): \( 0 \leq v \leq 1-u \)

### c. Compute the Jacobian
- **Jacobian**: \( J(u,v) = 42 \)

### d. Change Variables and Evaluate the New Integral
- Transform the integral with the change of variables and compute:

\[
\int \int_R x^2 \sqrt{x + 7y} \, dA = \text{Evaluate with new limits}
\]

- Rectangle or blanks indicate areas to insert specific numeric values or further computations.

This task involves understanding region transformations and computing integrals over transformed boundaries using the Jacobian determinant for variable changes.
Transcribed Image Text:# Evaluating a Double Integral with Change of Variables To evaluate the following integral, carry out these steps: ### a. Sketch the Original Region and the New Region - **Original Region in the xy-plane**: \( R = \{ (x,y): 0 \leq x \leq 7, -\frac{x}{7} \leq y \leq 6-x \} \) - **New Region in the uv-plane**: Use the change of variables \( x = 7u \) and \( y = 6v - u \). ### b. Find the Limits of Integration - For \( u \): \( 0 \leq u \leq 1 \) - For \( v \): \( 0 \leq v \leq 1-u \) ### c. Compute the Jacobian - **Jacobian**: \( J(u,v) = 42 \) ### d. Change Variables and Evaluate the New Integral - Transform the integral with the change of variables and compute: \[ \int \int_R x^2 \sqrt{x + 7y} \, dA = \text{Evaluate with new limits} \] - Rectangle or blanks indicate areas to insert specific numeric values or further computations. This task involves understanding region transformations and computing integrals over transformed boundaries using the Jacobian determinant for variable changes.
Expert Solution
Step 1: Description

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,