d. Change variables and evaluate the new integral. SSx²√x + 7y dA, where R= R y = 6v-u. X 0≤x≤7,-≤y≤6- where R=(x,y): 0≤x≤7, {(x,y): >; use x = 7u, u
d. Change variables and evaluate the new integral. SSx²√x + 7y dA, where R= R y = 6v-u. X 0≤x≤7,-≤y≤6- where R=(x,y): 0≤x≤7, {(x,y): >; use x = 7u, u
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Need help with d.
![# Evaluating a Double Integral with Change of Variables
To evaluate the following integral, carry out these steps:
### a. Sketch the Original Region and the New Region
- **Original Region in the xy-plane**: \( R = \{ (x,y): 0 \leq x \leq 7, -\frac{x}{7} \leq y \leq 6-x \} \)
- **New Region in the uv-plane**: Use the change of variables \( x = 7u \) and \( y = 6v - u \).
### b. Find the Limits of Integration
- For \( u \): \( 0 \leq u \leq 1 \)
- For \( v \): \( 0 \leq v \leq 1-u \)
### c. Compute the Jacobian
- **Jacobian**: \( J(u,v) = 42 \)
### d. Change Variables and Evaluate the New Integral
- Transform the integral with the change of variables and compute:
\[
\int \int_R x^2 \sqrt{x + 7y} \, dA = \text{Evaluate with new limits}
\]
- Rectangle or blanks indicate areas to insert specific numeric values or further computations.
This task involves understanding region transformations and computing integrals over transformed boundaries using the Jacobian determinant for variable changes.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff237bbf8-6485-48b1-b1a9-4cbf0285c93d%2F4c2a092d-5ca9-4691-ad4b-c05f57620c9c%2F4ri0e_processed.png&w=3840&q=75)
Transcribed Image Text:# Evaluating a Double Integral with Change of Variables
To evaluate the following integral, carry out these steps:
### a. Sketch the Original Region and the New Region
- **Original Region in the xy-plane**: \( R = \{ (x,y): 0 \leq x \leq 7, -\frac{x}{7} \leq y \leq 6-x \} \)
- **New Region in the uv-plane**: Use the change of variables \( x = 7u \) and \( y = 6v - u \).
### b. Find the Limits of Integration
- For \( u \): \( 0 \leq u \leq 1 \)
- For \( v \): \( 0 \leq v \leq 1-u \)
### c. Compute the Jacobian
- **Jacobian**: \( J(u,v) = 42 \)
### d. Change Variables and Evaluate the New Integral
- Transform the integral with the change of variables and compute:
\[
\int \int_R x^2 \sqrt{x + 7y} \, dA = \text{Evaluate with new limits}
\]
- Rectangle or blanks indicate areas to insert specific numeric values or further computations.
This task involves understanding region transformations and computing integrals over transformed boundaries using the Jacobian determinant for variable changes.
Expert Solution

Step 1: Description
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

