d tant lea) de tan' L) Itx? 2x THlege THe" ux 2) la 2x ln x Ids 2 lox t 2 y de 4(2/ax+2) 3) fL7)-6 gi(7)=4 (x=7) t f(G) し -50 t 24 -26

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Calculus Homework Solutions

The following notes cover derivative problem solutions typically encountered in a Calculus course.

---

#### Problem 1
Evaluate the derivative of the function \( \tan^{-1}(e^x) \):

\[ \frac{d}{dx} \left[ \tan^{-1} (e^x) \right] \]

We know that:

\[ \frac{d}{dx} \left[ \tan^{-1}(x) \right] = \frac{1}{1 + x^2} \]

Using the chain rule:

\[ \frac{d}{dx} \left[ \tan^{-1} (e^x) \right] = \frac{1}{1 + (e^x)^2} \cdot \frac{d}{dx}(e^x) \]

Simplify the expression:

\[ \frac{d}{dx} \left[ \tan^{-1} (e^x) \right] = \frac{1}{1 + e^{2x}} \cdot e^x = \frac{e^x}{1 + e^{2x}} = \frac{2e^{2x}}{1 + e^{2x}} \]

---

#### Problem 2
Given the function \( y = 2x \ln x \), find \( \frac{dy}{dx} \):

Use the product rule:

\[ y = 2x \ln x \]

\[ \frac{dy}{dx} = 2 (\ln x) + 2x \left( \frac{1}{x} \right) \]

Simplify the expression:

\[ \frac{dy}{dx} = 2 (\ln x) + 2 \]

Express \( \frac{dy}{dx} \) in terms of \( y \):

\[ \frac{dy}{dx} = y (2 \ln x + 2) \]

---

#### Problem 3
Given the functions and their derivatives:

\[ f(7) = 6, \quad f'(7) = 10 \]
\[ g(7) = -5, \quad g'(7) = 4 \]

Find \( h'(x) \) for \( h(x) = f(x) g(x) \) at \( x = 7 \):

Using the product rule:

\[ h'(x) = f'(x) g(x) +
Transcribed Image Text:### Calculus Homework Solutions The following notes cover derivative problem solutions typically encountered in a Calculus course. --- #### Problem 1 Evaluate the derivative of the function \( \tan^{-1}(e^x) \): \[ \frac{d}{dx} \left[ \tan^{-1} (e^x) \right] \] We know that: \[ \frac{d}{dx} \left[ \tan^{-1}(x) \right] = \frac{1}{1 + x^2} \] Using the chain rule: \[ \frac{d}{dx} \left[ \tan^{-1} (e^x) \right] = \frac{1}{1 + (e^x)^2} \cdot \frac{d}{dx}(e^x) \] Simplify the expression: \[ \frac{d}{dx} \left[ \tan^{-1} (e^x) \right] = \frac{1}{1 + e^{2x}} \cdot e^x = \frac{e^x}{1 + e^{2x}} = \frac{2e^{2x}}{1 + e^{2x}} \] --- #### Problem 2 Given the function \( y = 2x \ln x \), find \( \frac{dy}{dx} \): Use the product rule: \[ y = 2x \ln x \] \[ \frac{dy}{dx} = 2 (\ln x) + 2x \left( \frac{1}{x} \right) \] Simplify the expression: \[ \frac{dy}{dx} = 2 (\ln x) + 2 \] Express \( \frac{dy}{dx} \) in terms of \( y \): \[ \frac{dy}{dx} = y (2 \ln x + 2) \] --- #### Problem 3 Given the functions and their derivatives: \[ f(7) = 6, \quad f'(7) = 10 \] \[ g(7) = -5, \quad g'(7) = 4 \] Find \( h'(x) \) for \( h(x) = f(x) g(x) \) at \( x = 7 \): Using the product rule: \[ h'(x) = f'(x) g(x) +
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 6 images

Blurred answer
Knowledge Booster
Indefinite Integral
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,