(d) Show that the Fourier transform of a Gaussian is a Gaussian, and hence show that eik dk 2πδ(x).
(d) Show that the Fourier transform of a Gaussian is a Gaussian, and hence show that eik dk 2πδ(x).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
plz solve question (d) with explanation get multiple upvotes

Transcribed Image Text:1. A Pleasant Evening with Delta "functions"
Let's define the Dirac delta "function" 8(x) by the property
| f(x)8(x) dx = f (0),
for "well-behaved" functions f.
(a) Consider the family of box functions
1
2a
-a < x < a,
Ba(x)
else.
Show that in the a → 0 limit, Ba goes to the delta function.
(Hint: Taylor expand f around 0)
(b) Show that the Gaussian with u
(Hint: use a change of variables to show that (x") = Cno", for some constant Cm
which you need to evaluate only for n
0 goes to the delta function as o → 0.
(c) What are the values of 8(x) for x # 0, x =
0? Is it a well-defined function?
(d) Show that the Fourier transform of a Gaussian is a Gaussian, and hence show that
oika dk 2π (π). |
e
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

