d Prove, through the limit process, that (cos x) = - sin x. dx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Please solve and show all work, thank you!!!
**Prove, through the limit process, that \(\frac{d}{dx} (\cos x) = -\sin x\).**

### Explanation:

To prove this using the limit process, we start with the definition of the derivative:

\[
\frac{d}{dx} (\cos x) = \lim_{{h \to 0}} \frac{\cos(x+h) - \cos x}{h}
\]

Using the trigonometric identity for cosine, we have:

\[
\cos(x+h) = \cos x \cos h - \sin x \sin h
\]

Substituting this into the limit gives:

\[
\lim_{{h \to 0}} \frac{(\cos x \cos h - \sin x \sin h) - \cos x}{h}
\]

\[
= \lim_{{h \to 0}} \frac{\cos x (\cos h - 1) - \sin x \sin h}{h}
\]

This can be split into two separate limits:

\[
\lim_{{h \to 0}} \frac{\cos x (\cos h - 1)}{h} + \lim_{{h \to 0}} \left(-\sin x \frac{\sin h}{h}\right)
\]

Using limit properties and the known limits:

- \(\lim_{{h \to 0}} \frac{\cos h - 1}{h} = 0\)
- \(\lim_{{h \to 0}} \frac{\sin h}{h} = 1\)

Thus, the expression simplifies to:

\[
\cos x \cdot 0 - \sin x \cdot 1 = -\sin x
\]

Hence, we prove that:

\[
\frac{d}{dx} (\cos x) = -\sin x
\]
Transcribed Image Text:**Prove, through the limit process, that \(\frac{d}{dx} (\cos x) = -\sin x\).** ### Explanation: To prove this using the limit process, we start with the definition of the derivative: \[ \frac{d}{dx} (\cos x) = \lim_{{h \to 0}} \frac{\cos(x+h) - \cos x}{h} \] Using the trigonometric identity for cosine, we have: \[ \cos(x+h) = \cos x \cos h - \sin x \sin h \] Substituting this into the limit gives: \[ \lim_{{h \to 0}} \frac{(\cos x \cos h - \sin x \sin h) - \cos x}{h} \] \[ = \lim_{{h \to 0}} \frac{\cos x (\cos h - 1) - \sin x \sin h}{h} \] This can be split into two separate limits: \[ \lim_{{h \to 0}} \frac{\cos x (\cos h - 1)}{h} + \lim_{{h \to 0}} \left(-\sin x \frac{\sin h}{h}\right) \] Using limit properties and the known limits: - \(\lim_{{h \to 0}} \frac{\cos h - 1}{h} = 0\) - \(\lim_{{h \to 0}} \frac{\sin h}{h} = 1\) Thus, the expression simplifies to: \[ \cos x \cdot 0 - \sin x \cdot 1 = -\sin x \] Hence, we prove that: \[ \frac{d}{dx} (\cos x) = -\sin x \]
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning