An article suggested that under some circumstances the distribution of waiting time X could be modeled with the following pdf. 9- 1 F(x; 8, r) = otherwise (a) Graph f(x; 6, 80) for the three cases 8 = 3, 1, and 0.5 and comment on their shapes. f(x) fox) f(x) 0.05 0.04 0.05 8= 0.5 0.050= 0.5 0= 0.5 0.04 0.04 0.03 0.03 0.03 e= 3 8= 3 8= 3 0.02 0.02 0.02 =1 0=1 0.01 0.01 0.01 20 40 60 80 20 40 60 20 40 60 80 f(x) 0.05 = 0.5 0.04 0.03 = 3 0.02 0.01 20 40 60 80 (b) Obtain the cumulative distribution function of X. -1)-1 -(1-주)이 F(x) %3D 0
An article suggested that under some circumstances the distribution of waiting time X could be modeled with the following pdf. 9- 1 F(x; 8, r) = otherwise (a) Graph f(x; 6, 80) for the three cases 8 = 3, 1, and 0.5 and comment on their shapes. f(x) fox) f(x) 0.05 0.04 0.05 8= 0.5 0.050= 0.5 0= 0.5 0.04 0.04 0.03 0.03 0.03 e= 3 8= 3 8= 3 0.02 0.02 0.02 =1 0=1 0.01 0.01 0.01 20 40 60 80 20 40 60 20 40 60 80 f(x) 0.05 = 0.5 0.04 0.03 = 3 0.02 0.01 20 40 60 80 (b) Obtain the cumulative distribution function of X. -1)-1 -(1-주)이 F(x) %3D 0
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
I need help with section B, C and D

Transcribed Image Text:An article suggested that under some circumstances the distribution of waiting time X could be modeled with the following pdf.
Osx<T
F(x; 8, 1) =
otherwise
(a) Graph f(x; 8, 80) for the three cases 8 = 3, 1, and 0.5 and comment on their shapes.
f(x)
f(x)
f(x)
0.05
8 = 0.5
0.05 = 0.5
0.05
8 = 0.5
0.04
0.04
0.04
0.03
0.03
0.03
8= 3
8= 3
8= 3
0.02
0.02
0.02
8-1
8=1
0.01
0.01
0.01
20
40
60
80
20
40
60
80
20
40
60
80
f(x)
0.05 0= 0.5
0.04
0.03
0.02
0.01
20
40
60
80
(b) Obtain the cumulative distribution function of X.
F(x) =
1-
0 <x<T
(c) Obtain an expression for the median of the waiting time distribution.
u= T(1- 0.5) °
(d) For the case 8 = 3, 1 = 80, calculate P(40 sXs 70) without at this point doing any additional integration. (Round your answer to four decimal places.)
0.2421
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps

Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
Section D

Transcribed Image Text:An article suggested that under some circumstances the distribution of waiting time X could be modeled with the following pdf.
e - 1
f(x; 8, 7) =
otherwise
ULDL
(a) Graph f(x; 0, 80) for the three cases e = 3, 1, and 0.5 and comment on their shapes.
f(x)
f(x)
f(x)
f(x)
0.05 A 0 = 0.5
0.05
0 = 0.5
0.05 A 0 = 0.5
0.05
e = 0.5
0.04
0.04
0.04
0.04
0.03
0.03
0.03
0.03
0 = 3
0 = 3
0 = 3
0 = 3
0.02
0.02
0.02
0.02
0 = 1
0 = 1
0 = 1
8 = 1
0.01
0.01
0.01
0.01
20
40
60
80
20
40
60
80
20
40
60
80
20
40
60
80
(b) Obtain the cumulative distribution function of X.
XS0
-(1-)°
F(x) =
0 <x<T
1.
TSX
(c) Obtain an expression for the median of the waiting time distribution.
%3D
-0.5
(d) For the case e = 3, 1 = 80, calculate P(40 SXS 70) without at this point doing any additional integration. (Round your answer to four decimal places.)
0.1231
Solution
Similar questions
Recommended textbooks for you

A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON


A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
