d d Calculate (ri(t) · r2(t)] and [ri(t) x r2(t)] first by differentiating dt the product directly and then by applying the formulas dr2 dri d [ri(t) r2(t)] = ri(t). r2(t) and dt %3D dt dt d dr2 = r1(t) x dri di ri(t) × r2(t)] x r2(t). dt dt r1(t) : cos(t)i + sin(t)j + 5tk, r2(t) = 4i + tk

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
d
Calculate ri(t) · r2(t)] and r1(t) × r2(t)] first by differentiating
dt
dt
the product directly and then by applying the formulas
d
[ri(t) r2(t)] = ri(t) ·
dr2
+
dt
dri
· r2(t) and
%3|
dt
dt
d
dr2
dri
[ri(t) x r2(t)] = r1(t) ×
x r2(t).
dt
+
dt
dt
r1(t) = cos(t)i+ sin(t)j + 5tk,
r2(t) = 4i + tk
d
dt
d
[ri(t) x r2(t)] :
dt
Transcribed Image Text:d Calculate ri(t) · r2(t)] and r1(t) × r2(t)] first by differentiating dt dt the product directly and then by applying the formulas d [ri(t) r2(t)] = ri(t) · dr2 + dt dri · r2(t) and %3| dt dt d dr2 dri [ri(t) x r2(t)] = r1(t) × x r2(t). dt + dt dt r1(t) = cos(t)i+ sin(t)j + 5tk, r2(t) = 4i + tk d dt d [ri(t) x r2(t)] : dt
Expert Solution
steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,