Customers arrive on average every 30 minutes to The Grease Monkey, an auto repair shop with only one mechanic. The inter-arrival times are exponentially distributed. Repair times are variable with a mean of 25 minutes and a standard deviation of 20 minutes. The mechanic works on one vehicle at a time from beginning to end and takes in any waiting vehicles on a first-come first-served basis. The garage itself has room for only one vehicle at a time, so waiting vehicles are kept in the parking lot where there are always plenty of spaces available. Assume customers never balk or renege. a)What is the average number of cars in the garage (not including the parking lot)? b) How long (in minutes) do vehicles wait on average in the adjacent parking lot? c) The competitor shop across the street also has a single mechanic and an average of 3.1 vehicles waiting in its parking lot. The competitor only does oil changes, which take an average of 21 minutes. Customer inter-arrival times to the competitor have a mean of 24 minutes and follow an exponential distribution. What is the standard deviation of the time required for an oil change at the competitor’s shop?

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

Customers arrive on average every 30 minutes to The Grease Monkey, an auto repair shop with only one mechanic. The inter-arrival times are exponentially distributed. Repair times are variable with a mean of 25 minutes and a standard deviation of 20 minutes. The mechanic works on one vehicle at a time from beginning to end and takes in any waiting vehicles on a first-come first-served basis. The garage itself has room for only one vehicle at a time, so waiting vehicles are kept in the parking lot where there are always plenty of spaces available. Assume customers never balk or renege.

a)What is the average number of cars in the garage (not including the parking lot)?

b) How long (in minutes) do vehicles wait on average in the adjacent parking lot?

c) The competitor shop across the street also has a single mechanic and an average of 3.1 vehicles waiting in its parking lot. The competitor only does oil changes, which take an average of 21 minutes. Customer inter-arrival times to the competitor have a mean of 24 minutes and follow an exponential distribution. What is the standard deviation of the time required for an oil change at the competitor’s shop?

Expert Solution
steps

Step by step

Solved in 5 steps with 15 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman