curves3+ co-sis(28) and 1 ss. What is the area founded between the two polar curves?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
12.566
17.279
26.704
53.407
Transcribed Image Text:12.566 17.279 26.704 53.407
y
The graph above shows the polar
-X
curves -3+co-sin(28) and 1+sis. What is the area bounded between the two polar curves?
Transcribed Image Text:y The graph above shows the polar -X curves -3+co-sin(28) and 1+sis. What is the area bounded between the two polar curves?
Expert Solution
Step 1

                 The polar equations of the given two regions are  

                            r = 3 + cos θ - sin2θ   and   r = 1 + sinθ   

                The area between the given two regions is 

                               A = θr r dr dθ  -----------(1)

   where  r = inner region r = 1 + sinθ to  upper region  r = 3 + cos θ - sin2θ

                         θ = 0 to 2π  

 

Hence from (1) we get  A = θ=02πr = 1 + sinθr = 3 + cos θ - sin2θr dr dθ

 

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,