csc?x dx cot'x 1. Cos ax dr = sin ax + C 2. sin ax dx -- cos ax + C %3D a a 4. csc ar de 1 = -- cot ax + C 3. ax dx = - tan ax + C a a 1 csc ax + C a 5. sec ax tan ax dx =- sec ax + C 6. csc ax cot ax= a dr = + C 1 + + C, b > 0, b + 1 In b 7. ar + C 8. h dr = a dx dr 9. at + x + C = sin- + C, a > 0 10. tan a %3! a* - x dx 11. -- - - seC + C, a > 0 xV a a a
csc?x dx cot'x 1. Cos ax dr = sin ax + C 2. sin ax dx -- cos ax + C %3D a a 4. csc ar de 1 = -- cot ax + C 3. ax dx = - tan ax + C a a 1 csc ax + C a 5. sec ax tan ax dx =- sec ax + C 6. csc ax cot ax= a dr = + C 1 + + C, b > 0, b + 1 In b 7. ar + C 8. h dr = a dx dr 9. at + x + C = sin- + C, a > 0 10. tan a %3! a* - x dx 11. -- - - seC + C, a > 0 xV a a a
csc?x dx cot'x 1. Cos ax dr = sin ax + C 2. sin ax dx -- cos ax + C %3D a a 4. csc ar de 1 = -- cot ax + C 3. ax dx = - tan ax + C a a 1 csc ax + C a 5. sec ax tan ax dx =- sec ax + C 6. csc ax cot ax= a dr = + C 1 + + C, b > 0, b + 1 In b 7. ar + C 8. h dr = a dx dr 9. at + x + C = sin- + C, a > 0 10. tan a %3! a* - x dx 11. -- - - seC + C, a > 0 xV a a a
Use a change of variables or Table to evaluate the following indefinite integrals. Check your work by differentiating
Transcribed Image Text:csc?x
dx
cot'x
Transcribed Image Text:1.
Cos ax dr =
sin ax + C
2. sin ax dx
-- cos ax + C
%3D
a
a
4. csc ar de
1
= -- cot ax + C
3.
ax dx = - tan ax + C
a
a
1
csc ax + C
a
5.
sec ax tan ax dx =- sec ax + C
6.
csc ax cot ax=
a
dr = + C
1
+ + C, b > 0, b + 1
In b
7.
ar + C
8.
h dr =
a
dx
dr
9.
at + x
+ C
= sin- + C, a > 0
10.
tan
a
%3!
a* - x
dx
11.
--
- - seC
+ C, a > 0
xV
a
a
a
With differentiation, one of the major concepts of calculus. Integration involves the calculation of an integral, which is useful to find many quantities such as areas, volumes, and displacement.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.