Create Second Image Use the following x_fit and y_fit data to compute z_fit by invoking the model's predict() method. This will allow you to plot the line of best fit that is predicted by the model. ]: # Plot Curve Fit from mpl_toolkits import mplot3d from matplotlib.ticker import LinearLocator, FormatStrFormatter %matplotlib inline %matplotlib notebook x_fit = np.linspace(-21, 21,1000)| y_fit = x_fit x_fit = x_fit.reshape(-1,1) y_fit = y_fit.reshape(-1,1) PolyReg LinearRegression() PolyReg.fit(x_fit, y_fit) mixData = pd.DataFrame({'x_fit': [x_fit], 'y_fit': [y_fit]}) z_fit = PolyReg. predict (mixData["x_fit"][0]) plt.scatter(x_fit, y_fit) plt.plot(x fit 7 fit C='vellow')
Create Second Image Use the following x_fit and y_fit data to compute z_fit by invoking the model's predict() method. This will allow you to plot the line of best fit that is predicted by the model. ]: # Plot Curve Fit from mpl_toolkits import mplot3d from matplotlib.ticker import LinearLocator, FormatStrFormatter %matplotlib inline %matplotlib notebook x_fit = np.linspace(-21, 21,1000)| y_fit = x_fit x_fit = x_fit.reshape(-1,1) y_fit = y_fit.reshape(-1,1) PolyReg LinearRegression() PolyReg.fit(x_fit, y_fit) mixData = pd.DataFrame({'x_fit': [x_fit], 'y_fit': [y_fit]}) z_fit = PolyReg. predict (mixData["x_fit"][0]) plt.scatter(x_fit, y_fit) plt.plot(x fit 7 fit C='vellow')
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
![Create Second Image
Use the following x_fit and y_fit data to compute z_fit by invoking the model's predict() method. This will allow you to plot the line of best fit that
is predicted by the model.
7]: # Plot Curve Fit
from mpl_toolkits import mplot3d
from matplotlib.ticker import LinearLocator, FormatStrFormatter
%matplotlib inline
%matplotlib notebook
x_fit = np.linspace(-21, 21, 1000)|
y_fit = x_fit
x_fit = x_fit.reshape(-1,1)
y_fit = y_fit.reshape(-1,1)
PolyReg = LinearRegression()
PolyReg.fit(x_fit, y_fit)
mixData = pd.DataFrame({'x_fit': [x_fit], 'y_fit': [y_fit]})
z_fit = PolyReg.predict (mixData["x_fit"][0])
plt.scatter(x_fit, y_fit)
plt.plot(x_fit, z_fit, c='yellow')](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9a439e6e-0de6-4cc8-b17b-db5a75b83157%2Fcdd8bca2-d47e-45e7-bb0f-4814e36832f2%2Fvl3johm_processed.png&w=3840&q=75)
Transcribed Image Text:Create Second Image
Use the following x_fit and y_fit data to compute z_fit by invoking the model's predict() method. This will allow you to plot the line of best fit that
is predicted by the model.
7]: # Plot Curve Fit
from mpl_toolkits import mplot3d
from matplotlib.ticker import LinearLocator, FormatStrFormatter
%matplotlib inline
%matplotlib notebook
x_fit = np.linspace(-21, 21, 1000)|
y_fit = x_fit
x_fit = x_fit.reshape(-1,1)
y_fit = y_fit.reshape(-1,1)
PolyReg = LinearRegression()
PolyReg.fit(x_fit, y_fit)
mixData = pd.DataFrame({'x_fit': [x_fit], 'y_fit': [y_fit]})
z_fit = PolyReg.predict (mixData["x_fit"][0])
plt.scatter(x_fit, y_fit)
plt.plot(x_fit, z_fit, c='yellow')
![Z
500
400
300
200
100
О
О
Z
500
400
300
200
100
угаа
5
О
20
10
у
15
0
О
15
20
110
20
5
15
10
X
о
5
О
N
500
400
300
200
100
О
500
Z
О
400
300
200
100
О
О
5
прове
5
10
у
15
10
у
20
15
20
20
15
0
5
10
15
20
10
X
X
5
О](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9a439e6e-0de6-4cc8-b17b-db5a75b83157%2Fcdd8bca2-d47e-45e7-bb0f-4814e36832f2%2Ftyhnrg8_processed.png&w=3840&q=75)
Transcribed Image Text:Z
500
400
300
200
100
О
О
Z
500
400
300
200
100
угаа
5
О
20
10
у
15
0
О
15
20
110
20
5
15
10
X
о
5
О
N
500
400
300
200
100
О
500
Z
О
400
300
200
100
О
О
5
прове
5
10
у
15
10
у
20
15
20
20
15
0
5
10
15
20
10
X
X
5
О
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Database System Concepts](https://www.bartleby.com/isbn_cover_images/9780078022159/9780078022159_smallCoverImage.jpg)
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
![Starting Out with Python (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134444321/9780134444321_smallCoverImage.gif)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
![Digital Fundamentals (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780132737968/9780132737968_smallCoverImage.gif)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
![Database System Concepts](https://www.bartleby.com/isbn_cover_images/9780078022159/9780078022159_smallCoverImage.jpg)
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
![Starting Out with Python (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134444321/9780134444321_smallCoverImage.gif)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
![Digital Fundamentals (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780132737968/9780132737968_smallCoverImage.gif)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
![C How to Program (8th Edition)](https://www.bartleby.com/isbn_cover_images/9780133976892/9780133976892_smallCoverImage.gif)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
![Database Systems: Design, Implementation, & Manag…](https://www.bartleby.com/isbn_cover_images/9781337627900/9781337627900_smallCoverImage.gif)
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education