Coverting from abc waveform to qd0, I know I have to take the abc form and multiply by Ks matrix, which I have done bellow. However I am not sure how my answer is suppose to go from my calculation to the last set of 3 equation on the picture from 3.6-5 -3.6-7.

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question

Coverting from abc  waveform to qd0, I know I have to take the abc form and multiply by Ks matrix, which I have done bellow. However I am not sure how my answer is suppose to go from my calculation to the last set of 3 equation on the picture from 3.6-5 -3.6-7. 

 

 

The image contains mathematical expressions related to transformations in electrical engineering, specifically for phase currents. Here is the transcription of the text:

\[ f_{as} = \sqrt{2} f_s \cos \theta_{ef} \]

\[ f_{bs} = \sqrt{2} f_s \cos \left( \theta_{ef} - \frac{2\pi}{3} \right) \]

\[ f_{cs} = \sqrt{2} f_s \cos \left( \theta_{ef} + \frac{2\pi}{3} \right) \]

...of time and

\[ \frac{d\theta_{ef}}{dt} = \omega_e \]

into the transformation to the arbitrary...

\[ f_{qs} = \sqrt{2} f_s \cos (\theta_{ef} - \theta) \]

\[ f_{ds} = -\sqrt{2} f_s \sin (\theta_{ef} - \theta) \]

\[ f_{0s} = 0 \]

There are no graphs or diagrams in this image, only mathematical equations relevant for educational purposes on the transformation of phase currents in an electrical engineering context.
Transcribed Image Text:The image contains mathematical expressions related to transformations in electrical engineering, specifically for phase currents. Here is the transcription of the text: \[ f_{as} = \sqrt{2} f_s \cos \theta_{ef} \] \[ f_{bs} = \sqrt{2} f_s \cos \left( \theta_{ef} - \frac{2\pi}{3} \right) \] \[ f_{cs} = \sqrt{2} f_s \cos \left( \theta_{ef} + \frac{2\pi}{3} \right) \] ...of time and \[ \frac{d\theta_{ef}}{dt} = \omega_e \] into the transformation to the arbitrary... \[ f_{qs} = \sqrt{2} f_s \cos (\theta_{ef} - \theta) \] \[ f_{ds} = -\sqrt{2} f_s \sin (\theta_{ef} - \theta) \] \[ f_{0s} = 0 \] There are no graphs or diagrams in this image, only mathematical equations relevant for educational purposes on the transformation of phase currents in an electrical engineering context.
### Matrix Multiplication

#### Initial Matrices

We begin with the multiplication of two matrices:

1. **First Matrix:**

\[
\begin{pmatrix}
\cos(\theta) & \cos\left(\theta - \frac{2\pi}{3}\right) & \cos\left(\theta + \frac{2\pi}{3}\right) \\
\sin(\theta) & \sin\left(\theta - \frac{2\pi}{3}\right) & \sin\left(\theta + \frac{2\pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{pmatrix}
\]

2. **Second Matrix:**

\[
\begin{pmatrix}
\sqrt{2} f \cos(\alpha) \\
\sqrt{2} f \cos\left(\alpha - \frac{2\pi}{3}\right) \\
\sqrt{2} f \cos\left(\alpha + \frac{2\pi}{3}\right)
\end{pmatrix}
\]

#### Matrix Multiplication

To perform matrix multiplication, the elements of the rows of the first matrix are multiplied by the corresponding elements of the columns of the second matrix:

\[
\begin{pmatrix}
\cos(\theta) \sqrt{2} f \cos(\alpha) + \cos\left(\theta - \frac{2\pi}{3}\right) \sqrt{2} f \cos\left(\alpha - \frac{2\pi}{3}\right) + \cos\left(\theta + \frac{2\pi}{3}\right) \sqrt{2} f \cos\left(\alpha + \frac{2\pi}{3}\right) \\
\sin(\theta) \sqrt{2} f \cos(\alpha) + \sin\left(\theta - \frac{2\pi}{3}\right) \sqrt{2} f \cos\left(\alpha - \frac{2\pi}{3}\right) + \sin\left(\theta + \frac{2\pi}{3}\right) \sqrt{2} f \cos\left(\alpha + \frac{2\pi}{3}\right) \\
\frac{1}{2} \sqrt{
Transcribed Image Text:### Matrix Multiplication #### Initial Matrices We begin with the multiplication of two matrices: 1. **First Matrix:** \[ \begin{pmatrix} \cos(\theta) & \cos\left(\theta - \frac{2\pi}{3}\right) & \cos\left(\theta + \frac{2\pi}{3}\right) \\ \sin(\theta) & \sin\left(\theta - \frac{2\pi}{3}\right) & \sin\left(\theta + \frac{2\pi}{3}\right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \] 2. **Second Matrix:** \[ \begin{pmatrix} \sqrt{2} f \cos(\alpha) \\ \sqrt{2} f \cos\left(\alpha - \frac{2\pi}{3}\right) \\ \sqrt{2} f \cos\left(\alpha + \frac{2\pi}{3}\right) \end{pmatrix} \] #### Matrix Multiplication To perform matrix multiplication, the elements of the rows of the first matrix are multiplied by the corresponding elements of the columns of the second matrix: \[ \begin{pmatrix} \cos(\theta) \sqrt{2} f \cos(\alpha) + \cos\left(\theta - \frac{2\pi}{3}\right) \sqrt{2} f \cos\left(\alpha - \frac{2\pi}{3}\right) + \cos\left(\theta + \frac{2\pi}{3}\right) \sqrt{2} f \cos\left(\alpha + \frac{2\pi}{3}\right) \\ \sin(\theta) \sqrt{2} f \cos(\alpha) + \sin\left(\theta - \frac{2\pi}{3}\right) \sqrt{2} f \cos\left(\alpha - \frac{2\pi}{3}\right) + \sin\left(\theta + \frac{2\pi}{3}\right) \sqrt{2} f \cos\left(\alpha + \frac{2\pi}{3}\right) \\ \frac{1}{2} \sqrt{
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Transmission Line Parameter (T-parameter)
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,