Counting the number of outcomes in games of chancehas been a popular pastime for many centuries. This wasof interest not only because of the gambling that wasinvolved, but also because the outcomes of games ofchance were often interpreted as divine intent. Thus, itwas just about a thousand years ago that a bishop in whatis now Belgium determined that there are 56 different ways in which three dice can fall provided one is inter-ested only in the overall result and not in which die does what. He assigned a virtue to each of these possibilitiesand each sinner had to concentrate for some time on thevirtue that corresponded to his cast of the dice.(a) Find the number of ways in which three dice can allcome up with the same number of points.(b) Find the number of ways in which two of the threedice can come up with the same number of points, whilethe third comes up with a different number of points.(c) Find the number of ways in which all three of the dicecan come up with a different number of points.(d) Use the results of parts (a), (b), and (c) to verifythe bishop’s calculations that there are altogether 56possibilities.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Topic Video
Question
Counting the number of outcomes in games of chance
has been a popular pastime for many centuries. This was
of interest not only because of the gambling that was
involved, but also because the outcomes of games of
chance were often interpreted as divine intent. Thus, it
was just about a thousand years ago that a bishop in what
is now Belgium determined that there are 56 different
ways in which three dice can fall provided one is inter-
ested only in the overall result and not in which die does
what. He assigned a virtue to each of these possibilities
and each sinner had to concentrate for some time on the
virtue that corresponded to his cast of the dice.
(a) Find the number of ways in which three dice can all
come up with the same number of points.
(b) Find the number of ways in which two of the three
dice can come up with the same number of points, while
the third comes up with a different number of points.
(c) Find the number of ways in which all three of the dice
can come up with a different number of points.
(d) Use the results of parts (a), (b), and (c) to verify
the bishop’s calculations that there are altogether 56
possibilities.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Discrete Probability Distributions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman