cosh2z-sinh2z = 1 (compare sin z + cos? z = 1), d Cosh z= sinh d (compare cos z-sinz). sin 2) dz PROBLEMS, SECTION 12 Verify each of the following by using equations (11.4), (12.2), and (12.3). 1. sin zsin(riy)sin r cosh y+i cos r sinh y Hyperbolic Functions 71 Section 12 sinh zsinhr cos y +i cosh z sin y Cos zcos r cosh y-i sin z sinh y 2. 3. Cosh z= cosh z cos y +i sinh r sin y 4. sin 2z2 sin z cos z 5. Cos 2z cos2- sin sinh 2z 2 sinh z cosh z 6. d COs 2 sin dz cosh 2:= COsh+ sinh2 2+ sinh2 9. 8. d Cosh z= sinhz P 11. cosh-sinh2 z = 1 10. Cos sin : = 1 --sin 22 cos 3z=4 cos3 z-3 cos z 12. 13. 15. sinh izi sin z sin iz=i sinh 14. tanhizi tan z tan iz=itanh 17. 16. tan zi tanh y tanz= tan( +y)= itanrtanhy 18. tanhri tan y 1+i tanhr tany tanh z 19. Show that ez = (cosh zsinh z) = coshnz sinh nz. Use this and a similar equation for e- to find formulas for cosh 3z and sinh 3z in terms of sinh z and cosh 20. Use a computer to plot graphs of sinh r, cosh z, and tanh z. 21 22. Using (12.2) and (8.1), find, in summation form, the power series for sinh z and Cosh . Check the first few terms of your series by computer Find the real part, the imaginary part, and the absolute value of 23. соsh(ix) 24. сок(ir) 25. sin(-iy) tanh(1 i) 26. соsh(2 -3) 27. sin(4+3i) 28. Find each of the following in the r+iy form and check your answers by computer. Злі tanh sinh In 2+ cosh 2i 31. 29. 30. ( (-) in cosh sin 32 In 3 33 tan i 34 37. сов (iя) 35. cosh(i+2) sinh 1 36. The functions sin t, cos t,are called "circular functions" and the functions sinh t, cosh t, are called "hyperbolic functions". To see a reason for this, show that zcost, y sin t, satisfy the equation of a circle 2 y= 1, while z = cosh t, y=sinh t, satisfy the equation of a hyperbola z2-y= 1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question

Problems, Section 12 number 25,26. Please answer the questions

cosh2z-sinh2z = 1
(compare sin z + cos? z = 1),
d
Cosh z= sinh
d
(compare cos z-sinz).
sin 2)
dz
PROBLEMS, SECTION 12
Verify each of the following by using equations (11.4), (12.2), and (12.3).
1. sin zsin(riy)sin r cosh y+i cos r sinh y
Hyperbolic Functions 71
Section 12
sinh zsinhr cos y +i cosh z sin y
Cos zcos r cosh y-i sin z sinh y
2.
3.
Cosh z= cosh z cos y +i sinh r sin y
4.
sin 2z2 sin z cos z
5.
Cos 2z cos2- sin
sinh 2z 2 sinh z cosh z
6.
d
COs 2 sin
dz
cosh 2:= COsh+ sinh2
2+ sinh2
9.
8.
d
Cosh z= sinhz
P
11. cosh-sinh2 z = 1
10.
Cos
sin : = 1 --sin 22
cos 3z=4 cos3 z-3
cos z
12.
13.
15. sinh izi sin z
sin iz=i sinh
14.
tanhizi tan z
tan iz=itanh
17.
16.
tan zi tanh y
tanz= tan( +y)= itanrtanhy
18.
tanhri tan y
1+i tanhr tany
tanh z
19.
Show that ez = (cosh zsinh z) = coshnz sinh nz. Use this and a similar
equation for e- to find formulas for cosh 3z and sinh 3z in terms of sinh z and
cosh
20.
Use a computer to plot graphs of sinh r, cosh z, and tanh z.
21
22. Using (12.2) and (8.1), find, in summation form, the power series for sinh z and
Cosh . Check the first few terms of your series by computer
Find the real part, the imaginary part, and the absolute value of
23. соsh(ix)
24. сок(ir)
25. sin(-iy)
tanh(1 i)
26. соsh(2 -3)
27. sin(4+3i)
28.
Find each of the following in the r+iy form and check your answers by computer.
Злі
tanh
sinh In 2+
cosh 2i
31.
29.
30.
(
(-)
in
cosh
sin
32
In 3
33
tan i
34
37. сов (iя)
35. cosh(i+2)
sinh 1
36.
The functions sin t, cos t,are called "circular functions" and the functions sinh t,
cosh t, are called "hyperbolic functions". To see a reason for this, show that
zcost, y sin t, satisfy the equation of a circle 2 y= 1, while z = cosh t,
y=sinh t, satisfy the equation of a hyperbola z2-y= 1
Transcribed Image Text:cosh2z-sinh2z = 1 (compare sin z + cos? z = 1), d Cosh z= sinh d (compare cos z-sinz). sin 2) dz PROBLEMS, SECTION 12 Verify each of the following by using equations (11.4), (12.2), and (12.3). 1. sin zsin(riy)sin r cosh y+i cos r sinh y Hyperbolic Functions 71 Section 12 sinh zsinhr cos y +i cosh z sin y Cos zcos r cosh y-i sin z sinh y 2. 3. Cosh z= cosh z cos y +i sinh r sin y 4. sin 2z2 sin z cos z 5. Cos 2z cos2- sin sinh 2z 2 sinh z cosh z 6. d COs 2 sin dz cosh 2:= COsh+ sinh2 2+ sinh2 9. 8. d Cosh z= sinhz P 11. cosh-sinh2 z = 1 10. Cos sin : = 1 --sin 22 cos 3z=4 cos3 z-3 cos z 12. 13. 15. sinh izi sin z sin iz=i sinh 14. tanhizi tan z tan iz=itanh 17. 16. tan zi tanh y tanz= tan( +y)= itanrtanhy 18. tanhri tan y 1+i tanhr tany tanh z 19. Show that ez = (cosh zsinh z) = coshnz sinh nz. Use this and a similar equation for e- to find formulas for cosh 3z and sinh 3z in terms of sinh z and cosh 20. Use a computer to plot graphs of sinh r, cosh z, and tanh z. 21 22. Using (12.2) and (8.1), find, in summation form, the power series for sinh z and Cosh . Check the first few terms of your series by computer Find the real part, the imaginary part, and the absolute value of 23. соsh(ix) 24. сок(ir) 25. sin(-iy) tanh(1 i) 26. соsh(2 -3) 27. sin(4+3i) 28. Find each of the following in the r+iy form and check your answers by computer. Злі tanh sinh In 2+ cosh 2i 31. 29. 30. ( (-) in cosh sin 32 In 3 33 tan i 34 37. сов (iя) 35. cosh(i+2) sinh 1 36. The functions sin t, cos t,are called "circular functions" and the functions sinh t, cosh t, are called "hyperbolic functions". To see a reason for this, show that zcost, y sin t, satisfy the equation of a circle 2 y= 1, while z = cosh t, y=sinh t, satisfy the equation of a hyperbola z2-y= 1
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Propositional Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,