cos(A+ B) cos² A – sin? B sec(A – B) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Prove identity. by choosing one side and manipulate until you arrive at other side. 

The given mathematical equation is:

\[ \sec(A - B) = \frac{\cos(A + B)}{\cos^2 A - \sin^2 B} \]

### Explanation:
- **sec(A - B):** This represents the secant of the difference between angles A and B.
- **cos(A + B):** This is the cosine of the sum of angles A and B.
- **cos²A - sin²B:** This expression involves squaring the cosine of angle A and sine of angle B and then subtracting the latter from the former. 

This equation is part of trigonometric identities and can be useful in simplifying expressions or solving trigonometric equations.
Transcribed Image Text:The given mathematical equation is: \[ \sec(A - B) = \frac{\cos(A + B)}{\cos^2 A - \sin^2 B} \] ### Explanation: - **sec(A - B):** This represents the secant of the difference between angles A and B. - **cos(A + B):** This is the cosine of the sum of angles A and B. - **cos²A - sin²B:** This expression involves squaring the cosine of angle A and sine of angle B and then subtracting the latter from the former. This equation is part of trigonometric identities and can be useful in simplifying expressions or solving trigonometric equations.
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Half-angle, Double-angle, and Product-Sum Formulae
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,