cos.x Use logarithmic differentiation to find y' for y=(Inx)*** . Answer needs to in terms of x only!

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem Statement:**

Use logarithmic differentiation to find \( y' \) for \( y = (\ln x)^{\cos x} \). Answer needs to be in terms of \( x \) only!

**Solution Overview:**

To solve this problem, we need to utilize logarithmic differentiation since the function is a combination of logarithmic and trigonometric functions raised to a power. By taking the natural log on both sides, we can simplify the differentiation process. Here are the steps we'll follow:

1. Take the natural logarithm of both sides: \(\ln y = \ln((\ln x)^{\cos x})\).
2. Use the logarithm power rule: \(\ln y = \cos x \cdot \ln(\ln x)\).
3. Differentiate both sides with respect to \(x\):
   - The left side becomes \(\frac{1}{y} \cdot y'\).
   - The right side requires the product rule and chain rule.
4. Solve for \(y'\) and express it in terms of \(x\) only.

The result will give you the derivative of the function \( y = (\ln x)^{\cos x} \) in terms of \( x \).
Transcribed Image Text:**Problem Statement:** Use logarithmic differentiation to find \( y' \) for \( y = (\ln x)^{\cos x} \). Answer needs to be in terms of \( x \) only! **Solution Overview:** To solve this problem, we need to utilize logarithmic differentiation since the function is a combination of logarithmic and trigonometric functions raised to a power. By taking the natural log on both sides, we can simplify the differentiation process. Here are the steps we'll follow: 1. Take the natural logarithm of both sides: \(\ln y = \ln((\ln x)^{\cos x})\). 2. Use the logarithm power rule: \(\ln y = \cos x \cdot \ln(\ln x)\). 3. Differentiate both sides with respect to \(x\): - The left side becomes \(\frac{1}{y} \cdot y'\). - The right side requires the product rule and chain rule. 4. Solve for \(y'\) and express it in terms of \(x\) only. The result will give you the derivative of the function \( y = (\ln x)^{\cos x} \) in terms of \( x \).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Single Variable
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning